大数据分析系统平台方案有哪些

大数据分析系统平台方案有哪些,第1张

数据分析系统平台方案有很多,其中就有广州思迈特软件Smartbi的大数据分析系统平台方案。大数据分析系统平台方案深度洞察用户数据,帮企业用数据驱动产品改进及运营监控,思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

Smartbi产品功能设计全面,涵盖数据提取、数据管理、数据分析、数据共享四个环节,帮助客户从数据的角度描述业务现状,分析业务原因,预测业务趋势,推动业务变革。

思迈特软件Smartbi是国家认定的“高新技术企业”,广东省认定的“大数据培育企业”, 广州市认定的“两高四新企业”,获得了来自国家、地方政府、国内外权威分析机构、行业组织、知名媒体的高度关注和认可,斩获“大数据百强企业”、“中国十佳商业智能方案商”、“中国科技创新企业100强”等100+荣誉奖项!

凭借NLP和数据挖掘功能入选Gartner“中国AI创业公司代表厂商(2020)”,凭借思迈特软件Smartbi入选“Gartner增强分析2020代表厂商”。

大数据的分析与处理方法解读

越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析的方法理论有哪些呢?

大数据分析的五个基本方面

PredictiveAnalyticCapabilities(预测性分析能力)

数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

DataQualityandMasterDataManagement(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

AnalyticVisualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

SemanticEngines(语义引擎)

我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

DataMiningAlgorithms(数据挖掘算法)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。

大数据处理

大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。

采集

大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。

数据可视化的软件工具有:

RAWGraphs是一个在线的数据可视化开源工具,经常被用来处理Excel表中的数据。你只需要将数据上传到RAWGraphs中,设计出你想要的图表,然后将其导出为SVG格式或PNG格式的。此外,上传到RAWGraphs的数据只会在网页端进行处理,保证了数据的安全性。

ChartBlocks

是一个在线可视化工具,它的智能数据导入向导可以引导你一步一步地导入数据和设计图表,简单易用,还可以通过ChartBlocks一键在社交媒体(如Facebook和Twitter)上分享自己的图表。你还可以将图表作导出为SVG,PNG,JPEG格式的以及PDF,也可以生成源码并将图表嵌入到网站上。除了免费的个人账户以外,ChartBlocks还提供功能更加强大的专业账户和旗舰账户。

大数据正在走进人们的生活。虽然获取数据问题不大,但有很多人不知道如何得出结论,因为数据太多。常见的数据可视化工具,在这里推荐9个:

1、Datawrapper

Datawrapper是一个用于制作交互式图表的在线数据可视化工具。一旦您从CSV文件上传数据或直接将其粘贴到字段中,Datawrapper将生成一个条,线或任何其他相关的可视化文件。许多记者和新闻机构使用Datawrapper将实时图表嵌入到他们的文章中。这是非常容易使用和生产有效的图形。

2、Tableau Public

Tableau Public可能是最流行的可视化工具,它支持各种图表,图形,地图和其他图形。这是一个完全免费的工具,你用它制作的图表可以很容易地嵌入到任何网页中。他们有一个不错的画廊,显示通过Tableau创建的可视化效果。

虽然它提供的图表和图形比其他类似工具要好得多,但我并不喜欢使用它的免费版本,因为它附带了一个很大的页脚。如果不是像我这样大的关闭,那么你一定要试试看。或者如果你能负担得起,你可以去付费版本。

3、Smartbi

Smartbi作为成熟的大数据分析平台,具备可复用、 动静结合独特的展示效果,使得数据可视化灵活强大,动静皆宜,为广大用户提供了无限的应用能力和想象空间。

除了支持使用Excel作为报表设计器,完美兼容Excel的配置项。支持Excel所有内置图形、背景图、条件格式等设计复杂的仪表盘样式,同时支持完整ECharts 图形库,支持各种各样的图形,包含瀑布图、关系图、雷达图、油量图、热力图、树图等几十种动态交互的图形,借助于地理信息技术,还打造了地图分析功能。

4、Chartjs

非常适合小型项目。尽管只有六种图表类型,开源图书馆Chartjs是用于爱好和小型项目的完美数据可视化工具。使用HTML 5 canvas元素绘制图表,Chartjs创建响应式平面设计,并且正在迅速成为最流行的开源图表库之一。

5、Raw

Raw将自己定义为“电子表格和矢量图形之间的缺失链接”。它建立在D3js之上,设计得非常好。它有这样一个直观的界面,你会觉得你之前使用过它。它是开源的,不需要任何注册。

它有一个21图表类型的库可供选择,所有的处理在浏览器中完成。所以你的数据是安全的。RAW是高度可定制和可扩展的,甚至可以接受新的自定义布局。

6、Infogram

Infogram使您可以在线创建图表和图表。它有一个有限的免费版本和两个付费选项,其中包括200+地图,私人共享和图标库等功能。

它配备了一个易于使用的界面,其基本图表设计良好。我不喜欢的一个功能是当您尝试将交互式图表嵌入到您的网页(免费版)时所获得的巨大徽标。如果他们能像DataWrapper使用的小文本那样更好。

7、Timeline JS

顾名思义,Timeline JS可以帮助您创建美丽的时间线而无需编写任何代码。它是一个免费的开源工具,被Time和Radiolab等一些最受欢迎的网站所使用。

这是一个非常容易遵循四步过程来创建您的时间表,这在这里解释。最好的部分?它可以从各种来源获取媒体,并内置对Twitter,Flickr,Google Maps,YouTube,Vimeo,Vine,Dailymotion,Wikipedia,SoundCloud和其他类似网站的支持。

8、Plotly

Plotly是一个基于Web的数据分析和绘图工具。它支持具有内置社交分享功能的图表类型的良好集合。可用的图表和图表类型具有专业的外观和感觉。创建图表只需要加载信息并自定义布局,坐标轴,注释和图例。如果你想要开始,你可以在这里找到一些灵感。

9、Visualize Free

Visualize Free是一个托管工具,允许您使用公开可用的数据集,或者上传您自己的数据集,并构建交互式可视化来演示数据。可视化远远超出简单的图表,而且服务是完全免费的,而开发工作需要Flash,输出可以通过HTML5完成。

1可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3 预测性分析

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4 语义引擎

非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

5数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术

数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取: 关系数据库、NOSQL、SQL等。

基础架构: 云存储、分布式文件存储等。

数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。

统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

模型预测 :预测模型、机器学习、建模仿真。

结果呈现: 云计算、标签云、关系图等。

大数据的处理

1 大数据处理之一:采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

2 大数据处理之二:导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3 大数据处理之三:统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4 大数据处理之四:挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

以上就是关于大数据分析系统平台方案有哪些全部的内容,包括:大数据分析系统平台方案有哪些、大数据的分析与处理方法解读、好用的数据可视化工具等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9399627.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存