子网掩码计算方法
子网掩码是用来判断任意两台计算机的IP地址是否属于同一子网络的根据。
最为简单的理解就是两台计算机各自的IP地址与子网掩码进行AND运算后,如果得出的结果是相同的,则说明这两台计算机是处于同一个子网络上的,可以进行直接的通讯。就这么简单。
请看以下示例:
运算演示之一:aa
I P 地址 19216801
子网掩码 2552552550
AND运算
转化为二进制进行运算:
I P 地址 11010000101010000000000000000001
子网掩码 11111111111111111111111100000000
AND运算
11000000101010000000000000000000
转化为十进制后为:
19216800
运算演示之二:
I P 地址 1921680254
子网掩码 2552552550
AND 运算
转化为二进制进行运算:
I P 地址 11010000101010000000000011111110
子网掩码 11111111111111111111111100000000
AND运算
11000000101010000000000000000000
转化为十进制后为:
19216800
运算演示之三:
I P 地址 19216804
子网掩码 2552552550
AND运算
转化为二进制进行运算:
I P 地址 11010000101010000000000000000100
子网掩码 11111111111111111111111100000000
AND运算
11000000101010000000000000000000
转化为十进制后为:
19216800
通过以上对三组计算机IP地址与子网掩码的AND运算后,我们可以看到它运算结果是一样的。均为19216800
所以计算机就会把这三台计算机视为是同一子网络,然后进行通讯的。我现在单位使用的代理服务器,内部网络就是这样规划的。
也许你又要问,这样的子网掩码究竟有多少了IP地址可以用呢?你可以这样算。
根据上面我们可以看出,局域网内部的ip地址是我们自己规定的(当然和其他的ip地址是一样的),这个是由子网掩码决定的通过对2552552550的分析。可得出:
前三位IP码由分配下来的数字就只能固定为1921680 所以就只剩下了最后的一位了,那么显而易见了,ip地址只能有(2的8次方-1),即256-1=255一般末位为0或者是255的都有其特殊的作用。
那么你可能要问了:如果我的子网掩码不是2552552550呢?你也可以这样做啊假设你的子网掩码是2552551280
那么你的局域网内的ip地址的前两位肯定是固定的了(什么,为什么是固定的?你看上边不就明白了吗?·#¥)
这样,你就可以按照下边的计算来看看同一个子网内到底能有多少台机器
1、十进制128 = 二进制1000 0000
2、IP码要和子网掩码进行AND运算
3、
I P 地址 00010000010010011
子网掩码 11111111111111111000000000000000
AND运算
00010000010010011000000000000000
转化为十进制后为:
16 73 128 0
4、可知我们内部网可用的IP地址为:
00010000010010011000000000000000
到
00010000010010011111111111111111
5、转化为十进制:
16731280 到 1673255255
6、0和255通常作为网络的内部特殊用途。通常不使用。
7、于是最后的结果如下:我们单位所有可用的IP地址为:
1921681281-192168128254
1921681291-192168129254
1921681301-192168130254
1921681311-192168131254
1921681391-192168139254
1921681401-192168140254
1921681411-192168141254
1921681421-192168142254
1921681431-192168143254
1921682541-192168254254
1921682551-192168255254
8、总数为(255-128+1)(254-1+1) =128 254 = 32512
FAINT!!!!@#!@把我们公司都买了还买不了这么多的机器呢!·¥!·#
9、看看的结果是否正确
(1)、设定IP地址为1921681281
Ping 192168129233通过测试
访问>
#开启ip限制功能
tcpvalidnode_checking=yes
#允许访问数据库的IP地址列表,多个IP地址使用逗号分开
tcpinvited_nodes=(1921681110)
#禁止访问数据库的IP地址列表,多个IP地址使用逗号分开
tcpexcluded_nodes=(1921681111)
然后重启监听即可。
Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。TCP/IP 定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的协议来完成自己的需求。通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台联网设备规定一个地址。
IP
IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是否按顺序发送的或者有没有被破坏,IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。
高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。
TCP
TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。
TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。
如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。
TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。
面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。
可能的原因:
1、你未使用windows账户进行登录
2、你的TCP协议未启用
3、你的MSSQL未启用多种登录模式
4、本地计算机的防火墙阻挡了MSSQL端口对外的公布(默认端口是1433)
5、你的MSSQL安装不成功
等等,还有其他原因,你的描述不是太清楚,我只能判断到此
TCP/IP协议族为运输层指明了两个协议:TCP和UDP。它们都是作为应同程序和网络 *** 作的中介物。
运输层协议通常具有几种责任。一种是创建进程到进程的通信;UDP和TCP使用端口来完成这种通信。另一种责任就是在运输层提供控制机制。UDP在一个非常低的水平上完成这个功能。UDP没有流量控制机制,在收到分组时也没有确认。但是,UDP提供了某种程度的差错控制。如果UDP检测出在收到的分组中有差错,它就悄悄地丢弃这个分组。而TCP使用滑动窗口协议来完成流量控制。TCP使用确认分组,超时和重传来完成差错控制。
运输层还应负责为应用程序提供连接机制。这些应用程序应当能够向运输曾发送数据流。在发送站运输层分责任是和接收站建立连接,把数据流分割成可运输地单元,把它们编号,然后逐个发送它们。运输层在接收端的责任是等待属于同一个进程的所有不同单元的到达,检查并放过那些没有差错的单元,并以流的方式把它们交付给接收进程。当全部的流都发送完毕后,运输层应当关闭这个连接TCP完成所有上面的工作,而UDP不完成!
UDP叫做无连接的、不可靠的运输协议。TCP叫做面向连接的、可靠的运输协议,它给IP服务提供了面向连接和可靠性的特点。
TCP/IP协议族为运输层指明了两个协议:TCP和UDP。它们都是作为应同程序和网络 *** 作的中介物。
运输层协议通常具有几种责任。一种是创建进程到进程的通信;UDP和TCP使用端口来完成这种通信。另一种责任就是在运输层提供控制机制。UDP在一个非常低的水平上完成这个功能。UDP没有流量控制机制,在收到分组时也没有确认。但是,UDP提供了某种程度的差错控制。如果UDP检测出在收到的分组中有差错,它就悄悄地丢弃这个分组。而TCP使用滑动窗口协议来完成流量控制。TCP使用确认分组,超时和重传来完成差错控制。
运输层还应负责为应用程序提供连接机制。这些应用程序应当能够向运输曾发送数据流。在发送站运输层分责任是和接收站建立连接,把数据流分割成可运输地单元,把它们编号,然后逐个发送它们。运输层在接收端的责任是等待属于同一个进程的所有不同单元的到达,检查并放过那些没有差错的单元,并以流的方式把它们交付给接收进程。当全部的流都发送完毕后,运输层应当关闭这个连接TCP完成所有上面的工作,而UDP不完成!
UDP叫做无连接的、不可靠的运输协议。TCP叫做面向连接的、可靠的运输协议,它给IP服务提供了面向连接和可靠性的特点。
UDP分组叫做用户数据报。有8个字节的固定首部,源端口号、目的端口号、长度和检验和各2个字节。
UDP长度 = IP长度 - IP首部长度
下面是UDP的某些用途:
UDP适用于这样的进程,它需要简单的请求-响应通信,而较少考虑流量控制和差错控制。对于需要传送成块数据的进程,如FTP,通常不使用UDP。
UDP适用于具有内部流量控制和差错控制机制的进程。例如,简单文本传送协议(TFTP)的进程就包括流量控制和差错控制。它能够很容易地使用UDP。
对多播和广播来说,UDP是个合适的运输协议。多播和广播能力已经嵌入在UDP软件中,但没有嵌入在TCP软件中。
UDP可用于管理进程,如SNMP
UDP可用于某些路由选择更新协议,如路由信息协议(RIP)
IP
IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是否按顺序发送的或者有没有被破坏,IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。
高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。
TCP
TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。
TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。
如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。
TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。
面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。
UDP
UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实现广播发送。
UDP通讯时不需要接收方确认,属于不可靠的传输,可能会出现丢包现象,实际应用中要求程序员编程验证。
UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网络时间协议)和DNS(DNS也使用TCP)。
欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。
ICMP
ICMP与IP位于同一层,它被用来传送IP的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。
通讯端口
TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。
两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:
源IP地址 发送包的IP地址。
目的IP地址 接收包的IP地址。
源端口 源系统上的连接的端口。
目的端口 目的系统上的连接的端口。
端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
数据格式
数据帧:帧头+IP数据包+帧尾 (帧头包括源和目标主机MAC初步地址及类型,帧尾是校验字)
IP数据包:IP头部+TCP数据信息(IP头包括源和目标主机IP地址、类型、生存期等)
TCP数据信息:TCP头部+实际数据 (TCP头包括源和目标主机端口号、顺序号、确认号、校验字等)
IP地址
在Internet上连接的所有计算机,从大型机到微型计算机都是以独立的身份出现,我们称它为主机。为了实现各主机间的通信,每台主机都必须有一个唯一的网络地址。就好像每一个住宅都有唯一的门牌一样,才不至于在传输资料时出现混乱。
Internet的网络地址是指连入Internet网络的计算机的地址编号。所以,在Internet网络中,网络地址唯一地标识一台计算机。
我们都已经知道,Internet是由几千万台计算机互相连接而成的。而我们要确认网络上的每一台计算机,靠的就是能唯一标识该计算机的网络地址,这个地址就叫做IP(Internet Protocol的简写)地址,即用Internet协议语言表示的地址。
在Internet里,IP地址是一个32位的二进制地址,为了便于记忆,将它们分为4组,每组8位,由小数点分开,用四个字节来表示,而且,用点分开的每个字节的数值范围是0~255,如20211601,这种书写方法叫做点数表示法。
以上就是关于请问 数据库TCP/IP中 IP地址选项卡的各个IP代表什么意思全部的内容,包括:请问 数据库TCP/IP中 IP地址选项卡的各个IP代表什么意思、tcp ip协议属于哪个网络数据库、限制Oracle数据库用户只能从某个ip访问Oracle数据库,要怎么搞等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)