1、数据定义功能。DBMS提供相应数据语言来定义(DDL)数据库结构,它们是刻画数据库框架,并被保存在数据字典中。
2、数据存取功能。DBMS提供数据 *** 纵语言(DML),实现对数据库数据的基本存取 *** 作:检索,插入,修改和删除。
3、数据库运行管理功能。DBMS提供数据控制功能,即是数据的安全性、完整性和并发控制等对数据库运行进行有效地控制和管理,以确保数据正确有效。
4、数据库的建立和维护功能。包括数据库初始数据的装入,数据库的转储、恢复、重组织,系统性能监视、分析等功能。
5、数据库的传输。DBMS提供处理数据的传输,实现用户程序与DBMS之间的通信,通常与 *** 作系统协调完成。
HBase与传统关系数据库的区别?
答:主要体现在以下几个方面:1数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。
2数据 *** 作。关系数据库中包含了丰富的 *** 作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase *** 作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之间的关系,通常只采用单表的主键查询,所以它无法实现像关系数据库中那样的表与表之间的连接 *** 作。
3存储模式。关系数据库是基于行模式存储的,元祖或行会被连续地存储在磁盘页中。在读取数据时,需要顺序扫描每个元组,然后从中筛选出查询所需要的属性。如果每个元组只有少量属性的值对于查询是有用的,那么基于行模式存储就会浪费许多磁盘空间和内存带宽。HBase是基于列存储的,每个列族都由几个文件保存,不同列族的文件是分离的,它的优点是:可以降低I/O开销,支持大量并发用户查询,因为仅需要处理可以回答这些查询的列,而不是处理与查询无关的大量数据行;同一个列族中的数据会被一起进行压缩,由于同一列族内的数据相似度较高,因此可以获得较高的数据压缩比。
4数据索引。关系数据库通常可以针对不同列构建复杂的多个索引,以提高数据访问性能。与关系数据库不同的是,HBase只有一个索引——行键,通过巧妙的设计,HBase中所有访问方法,或者通过行键访问,或者通过行键扫描,从而使整个系统不会慢下来。由于HBase位于Hadoop框架之上,因此可以使用HadoopMapRece来快速、高效地生成索引表。
6数据维护。在关系数据库中,更新 *** 作会用最新的当前值去替换记录中原来的旧值,旧值被覆盖后就不会存在。而在HBase中执行更新 *** 作时,并不会删除数据旧的版本,而是生成一个新的版本,旧有的版本仍旧保留。
7可伸缩性。关系数据库很难实现横向扩展,纵向扩展的空间也比较有限。相反,HBase和BigTable这些分布式数据库就是为了实现灵活的水平扩展而开发的,因此能够轻易地通过在集群中增加或者减少硬件数量来实现性能的伸缩。
但是,相对于关系数据库来说,HBase也有自身的局限性,如HBase不支持事务,因此无法实现跨行的原子性。
注:本来也想来问这个问题,然后复制一下的。结果找不到,只好自己手打了,麻烦复制拿去用的同学点下赞呗。
DBMS 的主要功能如下。
数据定义
DBMS 提供数据定义语言(Data Definition Language, DDL),供用户定义、创建和修改数据库的结构。DDL 所描述的数据库结构仅仅给出了数据库的框架,数据库的框架信息被存放在系统目录中。
数据 *** 纵
DBMS 提供数据 *** 纵语言(Data Manipulation Language, DML),实现用户对数据的 *** 纵功能,包括对数据库数据的插入、删除、更新等 *** 作。
数据库的运行管理
DBMS 提供数据库的运行控制和管理功能,包括多用户环境下的事务的管理和自动恢复、并发控制和死锁检测、安全性检查和存取控制、完整性检查和执行、运行日志的组织管理等。这些功能保证了数据库系统的正常运行。
数据组织、存储与管理
DBMS 要分类组织、存储和管理各种数据,就需要确定以何种文件结构和存取方式来组织这些数据,实现数据之间的联系。数据组织和存储的基本目标是提高存储空间的利用率,选择合适的存取方法提高存取效率。
数据库的维护
数据库的维护包括数据库的数据载入、转换、转储、恢复,数据库的重组织和重构,以及性能监控分析等功能,这些功能分别由各个应用程序来完成。
以上就是关于数据库管理系统有那些基本功能全部的内容,包括:数据库管理系统有那些基本功能、Hbase和传统数据库的区别(hbase与传统的关系数据库的区别)、dbms的主要功能等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)