数据库优化怎么做

数据库优化怎么做,第1张

太复杂了,简单的说两句吧,

比如存储过程优化,选择一个好的数据库引擎,然后使用NTFS磁盘格式,

把数据库临时文件用单独的磁盘保存,要创建适当的索引,

有技术的话单独为数据库创建一个缓存服务器,

有钱的话选择X64的服务器系统和数据库引擎,简直是如虎添翼。。。

数据库查询 *** 作在各种数据库 *** 作中所占据的比重最大,而查询 *** 作所基于的select语句在SQL语句中又是代价最大的语句

举例来说,如果数据的量积累到一定程度,比如一个银行的账户数据库表信息积累到上百万甚至上千条记录,全表扫描一次往往需要数十分钟,甚至数小时

如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性

body{

line-height:200%;

}

如何优化MySQL数据库

当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。

我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、mycnf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。

1服务器物理硬件的优化

1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询 *** 作,对磁盘的读写量可想而知,所以推荐使用RAID1+0磁盘阵列,如果资金允许,可以选择固态硬盘做RAID1+0;

2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。

2MySQL应该采用编译安装的方式

MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。

3MySQL配置文件的优化

1)skip

-name

-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;

2)back_log

=

384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。

3)如果key_reads太大,则应该把mycnf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。

4MySQL上线后根据status状态进行适当优化

1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。

2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections

100%

=85%

5MySQL数据库的可扩展架构方案

1)MySQL

cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;

2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client、Server两层体系结构,还是使用Browser、Web、Database的三层体系结构。

3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数。

这需要根据导致运行速度不高的原因来考虑。

如果是因为数据库的关系,可以将不经常变化的却经常需要用到的数据在第一次读出来的时候保存到内存中,以后就不用再去读取了。

除此以外就是数据库连接的优化了,比如做好索引、分页读取等。

以上就是关于数据库优化怎么做全部的内容,包括:数据库优化怎么做、数据库查询优化的策略有哪些、数据库如何优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9444229.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存