简述关系型数据库和NOSQL数据库分别适用场景

简述关系型数据库和NOSQL数据库分别适用场景,第1张

关系型数据库(Relational Database Management System,RDBMS)是一种使用关系模型来组织数据的数据库管理系统。它是传统的、最常用的数据库类型,广泛应用于各种领域,如企业应用、政府机构、教育机构等。

关系型数据库适用于存储结构化数据和执行复杂的查询 *** 作的场景。它们提供了强大的查询功能,能够快速检索、汇总和分析数据。此外,关系型数据库还支持事务处理、约束、索引等功能,能够保证数据的完整性和一致性。

NOSQL(Not Only SQL)数据库是一种非关系型数据库,它旨在为大规模数据存储和处理提供更高的性能和更灵活的数据模型。NOSQL数据库主要分为四类:键值存储数据库、文档型数据库、列存储数据库和图型数据库。

NOSQL数据库适用于存储非结构化或半结构化数据的场景。它们支持快速写入和自动扩展,适用于海量数据的存储和处理。此外,NOSQL数据库还提供了灵活的数据模拟和查询功能,能够适应各种不同的数据类型和查询需求。但是,NOSQL数据库往往不支持事务处理和约束,因此在数据一致性和完整性方面可能不如关系型数据库。

总的来说,关系型数据库更适合存储结构化数据,执行复杂的查询和事务处理,保证数据一致性和完整性的场景。而NOSQL数据库更适合存储非结构化或半结构化数据,执行大规模数据存储和处理的场景。

这种方法通常是对现有的简历中的信息进行粗略的统计整理,总结出简历中信息所有的类别同时考虑系统真正关心的信息。对每一类别建立一个子表,比如上例中我们可以建立教育情况子表、工作情况子表、党籍情况子表等等,并在主表中加入一个备注字段,将其它系统不关心的信息和一开始没有考虑到的信息保存在备注中。

优点:查询统计比较方便。

缺点:不能适应数据的扩展,不能对扩展的信息进行检索,对项目设计阶段没有考虑到的同时又是系统关心的信息的存储不能很好的处理。 XML可能是最适合存储半结构化的数据了。将不同类别的信息保存在XML的不同的节点中就可以了。

优点:能够灵活的进行扩展,信息进行扩展式只要更改对应的DTD或者XSD就可以了。

缺点:查询效率比较低,要借助XPATH来完成查询统计,随着数据库对XML的支持的提升性能问题有望能够很好的解决。

结构化:数据结构字段含义确定,清晰,典型的如数据库中的表结构。

半结构化:具有一定结构,但语义不够确定,典型的如HTML网页,有些字段是确定的(title),有些不确定(table)

非结构化:杂乱无章的数据,很难按照一个概念去进行抽取,无规律性。

结构化程度是指对某一决策问题的决策过程、决策环境和规律,能否用明确的语言(数学的或逻辑学的、形式的或非形式的、定量的或定性的)给予说明或描述清晰程度或准确程度。按照决策问题的结构化程度不同把决策问题分成结构化问题、半结构化问题和非结构化问题三种类型。

1、结构化决策问题

结构化决策问题相对比较简单、直接,其决策过程和决策方法有固定的规律可以遵循,能用明确的语言和模型加以描述,并可依据一定的通用模型和决策规则实现其决策过程的基本自动化。早期的多数管理信息系统,能够求解这类问题,例如,应用运筹学方法等求解资源优化问题。

2、非结构化决策问题

非结构化决策问题是指那些决策过程复杂,其决策过程和决策方法没有固定的规律可以遵循,没有固定的决策规则和通用模型可依,决策者的主观行为(学识、经验、直觉、判断力、洞察力、个人偏好和决策风格等)对各阶段的决策效果有相当影响。往往是决策者根据掌握的情况和数据临时做出决定。

3、半结构化决策问题

半结构化决策问题介于上述两者之间,其决策过程和决策方法有一定规律可以遵循,但又不能完全确定,即有所了解但不全面,有所分析但不确切,有所估计但不确定。这样的决策问题一般可适当建立模型,但无法确定最优方案。

扩展资料:

结构化数据

就像上面举的例子。这种类别的数据最好处理,只要简单的建立一个对应的表就可以了。

非结构化数据

像、声音、视频等等。这类信息我们通常无法直接知道他的内容,数据库也只能将它保存在一个BLOB字段中,对以后检索非常麻烦。一般的做法是,建立一个包含三个字段的表(编号 number、内容描述 varchar(1024)、内容 blob)。

引用通过编号,检索通过内容描述。现在还有很多非结构化数据的处理工具,市面上常见的内容管理器就是其中的一种。

半结构化数据

这样的数据和上面两种类别都不一样,它是结构化的数据,但是结构变化很大。因为我们要了解数据的细节所以不能将数据简单的组织成一个文件按照非结构化数据处理,由于结构变化很大也不能够简单的建立一个表和他对应。本文主要讨论针对半结构化数据存储常用的两种方式。

参考资料:

百度百科--结构化

百度百科--半结构化数据

百度百科--非结构化数据

(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。

(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。

(3)数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。

数据清洗原理

数据清洗(data cleaning),简单地讲,就是从数据源中清除错误和不一致,即利用有关技术如数理统计、数据挖掘或预定义的清洗规则等,从数据中检测和消除错误数据、不完整数据和重复数据等,从而提高数据的质量。业务知识与清洗规则的制定在相当程度上取决于审计人员的积累与综合判断能力。因此,审计人员应按以下标准评价审计数据的质量。

(一)准确性:数据值与假定正确的值的一致程度。

(二)完整性:需要值的属性中无值缺失的程度。

(三)一致性:数据对一组约束的满足程度。

(四)惟一性:数据记录(及码值)的惟一性。

(五)效性:维护的数据足够严格以满足分类准则的接受要求。

以上就是关于简述关系型数据库和NOSQL数据库分别适用场景全部的内容,包括:简述关系型数据库和NOSQL数据库分别适用场景、半结构化数据的储存方式、高分悬赏!! 请问何谓结构化、半结构化、非结构化问题 (超紧急!!)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9450449.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存