银行如何建设企业级数据库基础逻辑数据模型

银行如何建设企业级数据库基础逻辑数据模型,第1张

前言:逻辑数据模型LDM是一种图形化的展现方式,一般采用面向对象的设计方法,有效组织来源多样的各种业务数据,使用统一的逻辑语言描述业务。借助相对抽象、逻辑统一且结构稳健的结构,实现数据仓库系统所要求的数据存储目标,支持大量的分析应用,是实现业务智能的重要基础,同时也是数据管理分析的工具和交流的有效手段。 需要强调的是,数据仓库逻辑数据模型特指数据仓库系统的核心基础模型,在搭建企业级数据仓库系统时,需要充分了解和分析种前台业务处理系统和应用,在此基础上进行有效的重组和整合,为各种分析应用(如客户关系管理、风险管理等)提供单一的、整合的数据基础,保证全行不同业务部门从不同的视角都可以使用统一的数据实现各自的分析需求。——担负这种数据重组和整合任务的数据模型称为数据仓库系统的“基础逻辑数据模型”。 基础逻辑数据模型建设好之后,银行可根据不同的分析应用需要(如客户关系管理、绩效考核、风险管理等),根据应用产品和功能设计不同的分析应用模型,包含具体的、特定的分析逻辑,往往这种模型中都含有较多加工处理的成分。——这种为实现特定用途而设计的数据模型称为数据仓库系统的“应用数据模型”。 因此,不夸张地说核心基础数据模型建设的成败性会影响到整个数据仓库系统的建设乃至后续各种分析应用,应引起银行科技建设和业务分析人员的高度重视。 本文尝试从银行建设基础逻辑数据模型的角度出发,分析、探讨建设过程中应该考虑的主要因素、建设的方法以及注意的问题。 一、整体规划、明确目标、合理定位 银行建设数据仓库系统时应充分明确建设目标,核心的逻辑数据模型是对银行业务的高度抽象、能够提供对关键业务数据的组织和整理,建立一套完整、统一、规范的标准,以便进行各类分析。一个好的核心基础数据数据模型应该满足以下条件: 概念上:具有高度抽象的、中性的、可共享的的概念,可有效、全面、完整地适应与涵盖银行现有的业务范畴以及数据范围;不针对某个特别的应用而设计; 结构上:应是稳定的、灵活的、可扩展的;能以满足第三范式的方法构建模型,存放最详尽的数据,保证足够的灵活性,适应复杂的实际业务情况,在业务发生变化或者新增数据源时易于扩展;核心结构在很长时间内应保持稳定性,便于回答不断产生、不断变化且无法预先定义的业务问题; 表现形式:应是规范的,易懂的;包括各类命名规范,业务规则定义,度量方式等。使用统一的业务语言进行模型设计,易于业务人员的理解和使用;也有利于IT部门和业务部门人员的沟通; 数据仓库系统的建设目的和方法不同于传统业务系统,其开发建设方式也有所不同,它的建设绝不是一蹴而就的事情,不能期望一朝一夕就可以全部完成,比较成熟的建设步骤应该是分阶段实施,逐步进行完善和增强因此作为项目起步的LDM建设对于规范和推动整个数据仓库系统的建设都将起到一个很好的促进。整个建设过程最关键的阶段就是项目的最初阶段,应将工作重心放在搭建模型框架、建立模型设计思想和培养模型设计人员三个方面。 明确了建设目标,具体实施应该如何开展呢 二、审慎选择、量体裁衣、度身定做 银行在明确建设目标之后,如何选择具体的实施策略、制定设计的阶段和步骤呢常见的主要有以下两种: 第一种:自主研发:银行根据以往的业务经验提炼本行业务的关键主题;再设计出本行的概念模型;然后通过具体的业务反复论证,同时考虑将来的分析需求进行基础逻辑数据模型的详细设计。 这种方法可以快速启动,完全依托本行的业务元素和规则,使用行内技术人员和业务人员比较熟悉的语言进行模型的设计,具有很好的适用性。但是整个建设周期比较长,同时往往由于经验不足等原因给项目带来一些不可控的风险,由于参与人员经验的不足,不能够站在全行的高度,从管理分析的角度去理解所有的业务以及相应的数据,造成一些局限性。 第二种:依托业成熟产品进行客户化:银行研究不同的业界模型产品,从中选择一个作为蓝本,结合本行的业务数据和应用系统进行具体的定制化。 这种方法的建设周期短、风险小,同时也能够很好地借鉴成熟的逻辑数据模型中蕴涵的经营管理理念。但是银行需要研究和比较多个业界流行的逻辑数据模型,熟悉各自的设计思想和理念,并从中挑选一个适合本行的模型产品进行客户化。 从国际、国内商业银行建设数据仓库系统的经验和案例来看,为了保证项目的成功实施,避免和控制项目风险,他们几乎都选择了第二种方法:客户化。那银行在面对众多逻辑数据模型产品进行选择的过程中主要应该都关注一些什么样的内容呢 产品层面: 覆盖范围:模型产品应能够适合、涵盖银行的所有业务范围,可以在单一模型中能支撑金零售银行、公司业务、保险、xyk、经纪、证券和电子商务等,满足未来混业经营的需要; 对业务发展的适应性:模型产品应有高度的概括和归纳,既满足范式化要求,又具有足够的灵活性,在扩展业务、新增品种或改变规则时,模型通过简单的调整和扩展即可适应; 对应用的支撑和扩充:模型产品不应偏向某个部门或某些专业的特定应用,要能够支持绩效管理、客户关系管理、资产负债管理、资金财务管理、风险管理等应用,并与国际金融业完全接轨,从数据接口层面支撑业界监管需要; 模型的开放性:模型产品应有清晰、严谨的模型架构,满足模块化和结构化的设计要求,真正实现数据一次导入,多次使用; 转化成物理数据模型的方便性:LDM设计完成,进行一些物理化的定义之后就可以直接利用建模工具平滑地完成物理模型设计。 服务层面: 客户化方法与能力:逻辑数据模型必须有经过实际项目验证过的客户化方法论做指导,明确严格的工作步骤、流程、任务分配,并提供必要模板; 业绩经验与表现:应具有国际化大型(特别是国内)商业银行相关项目和领域的成功实施案例;在行业内具有良好的信誉和业绩; 全球支持能力:全球专职研发团队——各国家地区的具体实施团队;高级建模顾问——高级金融行业顾问; 不难看出,上述这些考核的方面都是和将来的实施密切相关的。的确,一个成熟的优秀的模型产品,如果没有得到成功的实施,最终也不能为银行创造效益。下一部分主要讨论在实施过程中的关键因素。 三、关键成功因素 (1)参与人员的业务经验 LDM的设计和实施不是一个纯粹的技术问题,需要参与人员具有较高的银行业务修养和素质,设计人员应能够凭借丰富的业务经验和知识,将散落在各种不同业务系统以及日常经营管理中的各种数据元素进行高度的抽象和概况,形成本行的几个主题域(如当事人、协议、产品、事件等),用以清晰地表达业务逻辑和关系。同时,他们也必须时刻以目标(建设数据仓库系统)为导向,有选择地从前台业务系统中抽取相关的数据信息进行映射。 (2)设计团队的沟通机制 逻辑数据模型的设计过程本身就是一个不断发现问题、解决问题的过程,不可能某一个人就能够掌握庞杂银行业务中的点点滴滴,因此需要整个项目团队的密切配合。每个设计人员都必应具有良好的学习沟通能力,能够对建模工作达成共识,根据所定义的结构,将具体的业务数据映射到模型中,同时进行一些修改和校正。 (3)银行内部IT管理的水平 LDM设计过程中很大量的工作都是对现有业务系统的分析,包括对系统架构和功能的梳理、业务规则和关键业务元素的提炼、系统之间的逻辑关系等,并结合样本数据初步了解数据质量。如果没有一套有效的管理模式和有力的技术支持,如果没有现有业务系统的完备资料;如果没有快速问题反馈和解决机制,LDM的建设只能是空谈,因此这给银行内部IT管理水平提出了很高的要求。 (4)模型的管理和维护 在LDM整个建设周期内还应高度重视维护和管理工作,必需有严格的建模技术规范做指导和约束,包括命名、描述、版本控制等。随着时间的推移和项目建设阶段和目标的变化,为了使建成的基础数据模型具有持续的生命力,应在建设的所有阶段把涉及的建模规范内容文档化并强制执行;在人员发生变动时规定新参与人员应严格遵守这些规范,不能另行编制,保证前后的一致性。 总结: 尽管LDM仅仅是一个逻辑的概念,数据仓库系统需要在逻辑数据模型的指导下,进行真正的物理实施,将把分散在不同平台、以不同方式组织的各种业务数据以及部分外部信息经过清洗和转化,在保证数据一致性、准确性和实效性的前提下,开发各种应用,奠定实现银行商业智能的重要基础。 但是可以看到,通过数据仓库系统逻辑数据模型的设计,将有利于对银行现有业务过程的全局认识和系统把握,同时还能够从整体上对全行使用的 *** 作型业务系统进行回顾,从而提供改造和完善的建议,最终探索出一条符合银行自身业务实际发展要求的分析型应用系统的道路,为数据仓库系统的建设奠定坚实的基础。

问题一:数据库概念模型与什么有关 数据模型是对现实世界数据特征的抽象,其三要素是(数据结构,数据 *** 作,数据的约束条件)

最常用的数据模型分为概念数据模型和基本数据模型

概念数据模型是按用户的观点对数据和信息建模,是现实世界到信息世界的第一层抽象。

基本数据模型是按计算机系统的观点对数据建模,是现实世界数据特征的抽象,用于DBMS的实现(层次模型,网状模型,关系模型)

问题二:数据库概念模型的基本概述 把面向对象的方法和数据库技术结合起来可以使数据库系统的分析、设计最大程度地与人们对客观世界的认识相一致。面向对象数据库系统是为了满足新的数据库应用需要而产生的新一代数据库系统。数据库概念模型实际上是现实世界到机器世界的一个中间层次。数据库概念模型用于信息世界的建模,是现实世界到信息世界的第一层抽象,是数据库设计人员进行数据库设计的有力工具,也是数据库设计人员和用户之间进行交流的语言。建立数据概念模型,就是从数据的观点出发,观察系统中数据的采集、传输、处理、存储、输出等,经过分析、总结之后建立起来的一个逻辑模型,它主要是用于描述系统中数据的各种状态。这个模型不关心具体的实现方式(例如如何存储)和细节,而是主要关心数据在系统中的各个处理阶段的状态。 实际上,数据流图也是一种数据概念模型。

问题三:数据库中概念模型的含义和作用 数据模型是对现实世界数据特征的抽象,其三要素是(数据结构,数据 *** 作,数据的约束条件) 最常用的数据模型分为概念数据模型和基本数据模型 概念数据模型是按用户的观点对数据和信息建模,是现实世界到信息世界的第一层抽象。 基本数据模型是按计算机系统的观点对数据建模,是现实世界数据特征的抽象,用于DBMS的实现(层次模型,网状模型,关系模型)

问题四:概念模型是什么? 也称信息模型,它是按用户的观点来对数据和信息建模。概念模型是现实世界到机器世界的一个中间层次。表示概念模型最常用的是实体-关系图。概念模型是对真实世界中问题域内的事物的描述,不是对软件设计的描述。概念的描述包括:记号、内涵、外延,其中记号和内涵(视图)是其最具实际意义的。概念模型用于信息世界的建模,它是世界到信息世界的第一层抽象,它数据库设计的有力工具,也是数据库开发人员与用户之间进行交流的语言。因此概念模型既要有较强的表达能力,应该简单、清晰、易于理解。目前最常用的是实体-联系模型。在管理信息系统中,概念模型:是设计者对现实世界的认识结果的体现,是对软件系统的整体概括描述。让读者更易理解,读时有个参考的东西。概念模型设计的常用方法是实体关系方法(E-R方法)。用实体关系方法对具体数据进行抽象加工,将实体 抽象成实体类型,用实体间的关系反映现实世界事物间的内在关系。首先可以进行局部E-R模型,然后把各局部E-R模型综合成一个全局的E-R模型,最后对全局E-R模型进行优化,最后得到的。在数据仓库中的含义总的来说,数据仓库的结构采用了三级数据模型的方式,即概念模型、逻辑模型、物理模型。概念模型:也就是业务模型,由企业决策者,商务领域知识专家和IT专家共同研究和分析企业级的跨领域业务系统需求分析的结果。在数据仓库项目中,物理模型设计和业务模型设计象两个轮子一样有力地支撑着数据仓库的实施,两者并行不悖,缺一不可。实际上,这有意地扩大了物理模型和业务模型的内涵和外延,因为,在这里物理模型不仅仅是数据的存储,而且也包含了数据仓库项目实施的方法论、资源以及软硬件选型,而业务模型不仅仅是主题模型的确立,也包含了企业的发展战略,行业模本等等更多的内容。一个优秀的项目必定会兼顾业务需求和行业标准两个方面,业务需求既包括用户提出的实际需求,也要客观分析它隐含的更深层次的需求,但是往往用户的需求是不明确的,需要加以提炼甚至在商务知识专家引导下加以升华,和用户一起进行需求分析工作。如果不能满足用户的需求,项目也就失去了原本的意义。关于概念模型概念模型设计是在原有的业务数据库的基础上建立了一个较为稳固的概念模型。因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据 ,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中有什么、怎样组织的和如何分布的等,然后再来考虑应当如何建立数据仓库系统的概念模型。一方面,通过原有数据库的设计文档以及在数据字典中的数据库关系模式,我们可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。它的工作主要是界定系统的边界和确定主要的主题域。界定系统边界将决策者的数据分析的需求用系统边界的定义形式反映出来。确定主题域是对每个主题域的内容进行较明确的数据仓库建模技术在行业中的应用描述,其内容包括:主题域的公共码键、主题域之间的联系以及充分代表主题的属性组。

问题五:数据库设计概念模型图,逻辑模型图分别是什么? 11概念模型(E-R图描述)

概念模型是对真实世界中问题域内的事物的描述,不是对软件设计的描述。

表示概念模型最常用的是实体-关系图。

E-R图主要是由实体、属性和关系三个要素构成的。在E-R图中,使用了下面几种基本的图形符号。

实体,矩形

E/R图三要素 属性,椭圆形

关系,菱形

关系:一对一关系,一对多关系,多对多关系。

E/R图中的子类(实体):

12逻辑模型

逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。

13物理模型

物理模型是对真实数据库的描述。数据库中的一些对象如下:表,视图,字段,数据类型、长度、主键、外键、索引、是否可为空,默认值。

概念模型到物理模型的转换即是把概念模型中的对象转换成物理模型的对象。

问题六:什么是数据库的概念结构 1 数据库定义:数据库是长期储存在计算机内、有组织的、可共享的大量数据的 。数据库中的数据按一定的数据模型组织、描述和储存,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。2 数据库管理技术发展的三个阶段:人工管理阶段,文件系统阶段,数据库系统阶段。3 DBMS(数据库管理系统)是位于用户与 *** 作系统之间的一层数据管理软件。主要功能:1,数据定义功能。2,数据组织、存储和管理。3,数据 *** 纵功能。4,数据库的事务管理和运行管理。5,数据库的建立和维护功能。6,其他功能。4 什么是数据模型及其要素 (设计题): 数据模型是数据库中用来对现实世界进行抽象的工具,是数据库中用于提供信息表示和 *** 作手段的形式构架。一般地讲,数据模型是严格定义的概念的 。这些概 念精确地描述系统的静态特性、动态特性和完整性约束条件。因此数据模型通常由数据结构、数据 *** 作和完整性约束三部分组成。 (1)数据结构:是所研究的对象类型的 ,是对系统的静态特性的描述。 (2)数据 *** 作:是指对数据库中各种对象(型)的实例(值)允许进行的 *** 作的 ,包括 *** 作及有关的 *** 作规则,是对系统动态特性的描述。 (3)数据的约束条件:是完整性规则的 ,完整性规则是给定的数据模型中数据及其联系所具有的制约和依存规则,用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。最常用的数据模型:层次模型,网状模型,关系模型,面积对象模型,对象关系模型。5常用的数据模型有哪些(逻辑模型是主要的),各有什么特征,数据结构是什么样的。答:数据模型可分为两类:第一类是概念模型,也称信息模型,它是按用户的观点来地数据和信息建模,主要用于数据库设计。第二类是逻辑模型和物理模型。其中逻辑模型主要包括层次模型、层次模型、关系模型、面向对象模型和对象关系模型等。它是按计算机系统的观点对数据建模,主要用于DBMS的实现。物理模型是对数据最低层的抽象,它描述数据在系统内部的表示方式和存取方法,在磁盘或磁带上的存储方式和存取方法,是面向计算机系统的。物理模型是具体实现是DBMS的任务,数据库设计人员要了解和选择物理醋,一般用户则不必考虑物理级的细节。层次数据模型的数据结构特点:一是:有且只有一个结点没有双亲结点,这个结点称为根结点。二是:根 以外的其他结点有且只有一个双亲结点。优点是:1层次 数据结构比较简单清晰。2层次数据库的查询效率高。3层次数据模型提供了良好的完整性支持。缺点主要有:1现实世界中很多联系是非层次性的,如结点之间具有多对多联系。2一个结点具有多个双亲等 ,层次模型表示这类联系的方法很笨拙,只能通过引入冗余数据或创建非自然的数据结构来解决。对插入和删除 *** 作的限制比较多,因此应用程序的编写比较复杂。3查询子女结点必须通过双亲结点。4由于结构严密,层次命令趋于程序化。可见用层次模型对具有一对多的层次联系的部门描述非常自然,直观容易理解,这是层次数据库的突出优点。网状模型:特点:1允许一个以上的结点无双亲2一个结点可以有多于一个的双亲。网状数据模型的优点主要有:1能够更为直接地描述现实世界,如一个结点可以有多个双亲。结点

之间可以有多种上联第。2具有良好的性能,存取效率较高。缺点主要有:1结构比较复杂,而且随着应用环境的扩大,数据库的结构就变得越来越复杂,不利于最终 用户掌握。2网状模型的DDL,DML复杂,并且要嵌入某一种高级语言中,用户不容易掌握,不容易使用。关系数据模型具有下列优点:1关系模型与非关系模型不同,它是建立在严格的数学>>

问题七:怎么用powerdesigner画数据库概念模型 怎么用powerdesigner画数据库概念模型方法/步骤

打开PowerDesigner,点击菜单“File”---->“New Model”

点击OK按钮后,将进入如下的画面,

系统将出现一个工具栏如下,用于在设计面板中设计模型,

单击Entity图标,然后在主面板中单击一次便可添加一个实体,

切换回一般鼠标模式,双击已经添加的实体,d出设置属性的对话框,

在General选项卡中可以设置实体的Name和Code等属性,

Code是实体在数据库中的实际名称,一般用英文,Name是显示的名称,一般用中文,方便理解。

切换到Attributes选项卡可以添加实体的属性,

问题八:数据库概念模型的关系模型 在关系模型中,数据的逻辑结构是一张二维表。在数据库中,满足下列条件的二维表称为关系模型:① 每一列中的分量是类型相同的数据;② 列的顺序可以是任意的;③ 行的顺序可以是任意的;④ 表中的分量是不可再分割的最小数据项,即表中不允许有子表;⑤ 表中的任意两行不能完全相同。关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro,mysql,sqlserver等。关系模型范式只有满足一定条件的关系模式,才能避免 *** 作异常。关系模式要满足的条件称为规范化形式,简称范式。下面介绍四种不同程度的范式,由低级向高级:1、第一范式(1NF)在关系模式R的每一个具体关系r中,如果每个属性值都是不可能再分的最小数据单元,则称R是第一范式。记为R∈1NF。1NF是关系数据库能够保存数据并且正确访问数据的最基本条件。2、第二范式(2NF)如果关系模式R(U,F)中的所有非主属性都完全函数依赖于任意一个候选关键字,则称关系R是属于第二范式。记为R∈2NF。3、第三范式(3NF)如果关系模式R(U,F)中所有非主属性对任何侯选关键字都不存在传递依赖,则称关系R是属于第三范式。记为R∈3NF。4、BCNF如果关系模式R(U,F)R属于1NF,对任何非平凡依赖的函数依赖X→Y(Y!→X)X均包含码。记为R∈BCNF。如果R是BCNF则一定是3NF;反之则不行。一个低级范式的关系模式,可以通过分解方法转换成若干个高一级范式的关系模式的 ,也可以说任何一个高层的范式,总是能够满足低层的范式。

问题九:模型的概念。数据库中的数据模型主要有哪些?数据模型的组成的要素有哪些? 数据库模型描述了在数据库中结构化和 *** 纵数据的方法,模型的结构部分规定了数据如何被描述(例如树、表等);模型的 *** 纵部分规定了数据的添加、删除、显示、维护、打印、查找、选择、排序和更新等 *** 作。

数据库模型的分类

1概念模型 2 层次模型

3 网状模型 4 关系模型

数据模型所描述的内容包括三个部分:数据结构、数据 *** 作、数据约束。

1、划定业务范围;

2、建立业务模型;

3、定义业务主体;

4、确定分析纬度;

5、分解业务实体表;

6、抽取纬度代码表;

基本上就是这几步,具体细节还要根据实际情况处理

逻辑结构设计是将概念结构设计阶段完成的概念模型,转换成能被选定的数据库管理系统(DBMS)支持的数据模型。这里主要将E-R模型转换为关系模型。需要具体说明把原始数据进行分解、合并后重新组织起来的数据库全局逻辑结构,包括所确定的关键字和属性、重新确定的记录结构和文件结构、所建立的各个文件之间的相互关系,形成本数据库的数据库管理员视图。

逻辑结构设计一般分为三步进行:

1从E-R图向关系模式转化数据库的逻辑设计主要是将概念模型转换成一般的关系模式,也就是将E-R图中的实体、实体的属性和实体之间的联系转化为关系模式。在转化过程中会遇到如下问题:

(1)命名问题。命名问题可以采用原名,也可以另行命名,避免重名。

(2)非原子属性问题。非原子属性问题可将其进行纵向和横行展开。

(3)联系转换问题。联系可用关系表示。

2数据模型的优化数据库逻辑设计的结果不是唯一的。为了进一步提高数据库应用系统的性能,还应该适当修改数据模型的结构,提高查询的速度。

3关系视图设计关系视图的设计又称为外模式的设计,也叫用户模式设计,是用户可直接访问的数据模式。同一系统中,不同用户可有不同的关系视图。关系视图来自逻辑模式,但在结构和形式上可能不同于逻辑模式,所以它不是逻辑模式的简单子集。

关系视图主要有三个作用:

(1)通过外模式对逻辑模式的屏蔽,为应用程序提供了一定的逻辑独立性。

(2)更好地适应不同用户对数据的不同需求。

(3)为不同用户划定了访问数据的不同范围,有利于数据的保密。

以上就是关于银行如何建设企业级数据库基础逻辑数据模型全部的内容,包括:银行如何建设企业级数据库基础逻辑数据模型、什么是数据库概念模型、数据库由概念到逻辑模型是怎么转换的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9459643.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存