MySQL数据库,一天一万条以上的增量,怎么优化

MySQL数据库,一天一万条以上的增量,怎么优化,第1张

bulk_insert_buffer_size参数相对增大———用于存放insert语句的缓存空间,增大可以提高insert的速度

对于insert频率较大的表,可以适当删除不常用的索引,可以减少对表索引维护的开销

在业务允许的情况下,也就是说不需要事物机制,建议用myisam引擎,相比较而言,myisam比innodb的批量插入要快很多,当然还有archive引擎,不过这个引擎很少用,所以建议还是用myisam

1优化数据结构,每张数据表字段4-5个,加上索引。还可以将不同的种类的数据存入不同的数据库。减少单个数据库的压力。

2写入数据只是存的问题,问题在于读取数据会变慢。建议使用缓存memcache,redis在向你招收哦。将用户数据存入内存,再次读取避免从数据库查找。

3分布式,搞集群,扩大配置。

一条新闻的相关信息,来源,作者,正文,这些基本不变咯,除了正文可能文字比较多,其他的你可以存进缓存,正文的话,你这里可以把前面200字作为正文缩略,存进缓存。

1 SQL查询语句的重写,对于一个查询可以用多种查询语句实现,但不同查询语句的数据库执行计划是不同的,一旦不能够使用索引或造成较大的内存占用会导致性能下降,因此需要对查询语句进行重写优化,最典型的例子就是not in语句使用外连接方式实现来进行优化

2 创建合理的索引结构,根据查询语句的中查询条件,在关系表上建立相应的索引,如B+树索引和hash索引

3 修改程序业务逻辑,有些功能如果使用SQL语句实现,不但SQL语句复杂,还将导致数据库的负担增加,因此可以将有些数据 *** 作的业务逻辑放到应用层进行实现,就是通过java编程实现

4 修改数据库服务器相关参数,优化服务器性能

1应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

2应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

3应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

4in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

5尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。

见如下例子:

SELECT FROM T1 WHERE NAME LIKE ‘%L%’

SELECT FROM T1 WHERE SUBSTING(NAME,2,1)=’L’

SELECT FROM T1 WHERE NAME LIKE ‘L%’

即使NAME字段建有索引,前两个查询依然无法利用索引完成加快 *** 作,引擎不得不对全表所有数据逐条 *** 作来完成任务。而第三个查询能够使用索引来加快 *** 作。

6必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

7应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:

SELECT FROM T1 WHERE F1/2=100

应改为:

SELECT FROM T1 WHERE F1=1002

SELECT FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’

应改为:

SELECT FROM RECORD WHERE CARD_NO LIKE ‘5378%’

SELECT member_number, first_name, last_name FROM members

WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21

应改为:

SELECT member_number, first_name, last_name FROM members

WHERE dateofbirth < DATEADD(yy,-21,GETDATE())

即:任何对列的 *** 作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将 *** 作移至等号右边。

8应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)='abc'--name以abc开头的id

select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id

应改为:

select id from t where name like 'abc%'

select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'

9不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

10在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

11很多时候用 exists是一个好的选择:

elect num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=anum)

SELECT SUM(T1C1)FROM T1 WHERE(

(SELECT COUNT()FROM T2 WHERE T2C2=T1C2>0)

SELECT SUM(T1C1) FROM T1WHERE EXISTS(

SELECT FROM T2 WHERE T2C2=T1C2)

两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

调整数据结构的设计。调整应用程序结构设计。

数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。

它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2…”、“阴、雨、下降、气温”、“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。

在计算机科学中,数据是所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。

以上就是关于MySQL数据库,一天一万条以上的增量,怎么优化全部的内容,包括:MySQL数据库,一天一万条以上的增量,怎么优化、数据库查询有哪些优化方面、如何优化数据库中数据的查询等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9463421.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存