一个分布式数据库在用户面前为单个逻辑数据库,但实际上是由存储在多台计算机上的一组数据库组成
在几台计算机上的数据库通过网络可同时修改和存取,每一数据库受它的局部的DBMS控制
分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性
在系统中的每一台计算机称为结点
如果一结点具有管理数据库软件,该结点称为数据库服务器
如果一个结点为请求服务器的信息的一应用,该结点称为客户
在ORACLE客户,执行数据库应用,可存取数据信息和与用户交互
在服务器,执行ORACLE软件,处理对ORACLE数据库并发、共享数据存取
ORACLE允许上述两部分在同一台计算机上,但当客户部分和服务器部分是由网连接的不同计算机上时,更有效
分布处理是由多台处理机分担单个任务的处理
在ORACLE数据库系统中分布处理的例子如:客户和服务器是位于网络连接的不同计算机上
单台计算机上有多个处理器,不同处理器分别执行客户应用
SQLNET是ORACLE网络接口,允许运行在网络工作站的ORACLE工具和服务器上,可存取、修改、共享和存储在其它服务器上的数据
SAQLNET可被认为是网络通信的程序接口
SQLNET利用通信协议和应用程序接口(API)为OARCLE提供一个分布式数据库和分布处理
SQLNET驱动器为在数据库服务器上运行的ORACLE进程与ORACLE工具的用户进程之间提供一个接口
参与分布式数据库的每一服务器是分别地独立地管理数据库,好像每一数据库不是网络化的数据库
每一个数据库独立地被管理,称为场地自治性
场地自治性有下列好处:◆系统的结点可反映公司的逻辑组织
◆由局部数据库管理员控制局部数据,这样每一个数据库管理员责任域要小一些,可更好管理
◆只要一个数据库和网络是可用,那么全局数据库可部分可用
不会因一个数据库的故障而停止全部 *** 作或引起性能瓶颈
◆故障恢复通常在单个结点上进行
◆每个局部数据库存在一个数据字典
◆结点可独立地升级软件
可从分布式数据库的所有结点存取模式对象,因此正像非分布的局部的DBMS,必须提供一种机制,可在局部数据库中引用一个对象
分布式DBMS必须提供一种命名模式,以致分布式数据库中一个对象可在应用中唯一标识和引用
一般彩在层次结构的每一层实施唯一性
分布式DVMS简单地扩充层次命名模型,实施在网络上唯一数据库命名
因此一个对象的全局对象名保证在分布式数据库内是唯一
ORACLE允许在SQL语句中使用佤对象名引用分布式数据库中的模式对象(表、视图和过程)
在ORACLE中,一个模式对象的全局名由三部分组成:包含对象的模式名、对象名、数据库名、其形式如:SCOTT
EMP@SALES
DIVISION3
ACME
COM其中SCOTT为模式名,EMP为表名,@符号之后为数据库名
一个远程查询为一查询,是从一个或多个远程表中选择信息,这些表驻留在同一个远程结点
一个分布式查询可从两个或多个结点检索数据
一个分布式更新可修改两个或两个以上结点的数据
一个远程事务为一个事务,包含一人或多个远程语句,它所引用的全部是在同一个远程结点上
一个分布式事务中一个事务,包含一个或多个语句修改分布式数据库的两个或多个不同结点的数据
在分布式数据库中,事务控制必须在网络上直辖市,保证数据一致性
两阶段提交机制保证参与分布式事务的全部数据库服务器是全部提交或全部回滚事务中的语句
ORACLE分布式数据库系统结构可由ORACLE数据库管理员为终端用户和应用提供位置透明性,利用视图、同义词、过程可提供ORACLE分布式数据库系统中的位置透明性
ORACLE允许在SELECT(查询)、INSERT、UPDATE、DELETE、SELECTFORUPDATE和LOCKTABLE语句中引用远程数据
对于查询,包含有连接、聚合、子查询和SELECTFORUPDATE,可引用本地的、远程的表和视图
对于UPDATE、INSERT、DELETE和LOCKTABLE语句可引用本地的和远程的表
注意在引用LONG和LONGRAW列、序列、修改表和封锁表时,必须位于同一个结点
ORACLE不允许作远程DDL语句
在单场地或分布式数据库中,所有事务都是用COMMIT或ROLLBACK语句中止
ORACLE提供两种机制实现分布式数据库中表重复的透明性:表快照提供异步的表重复;触发器实现同步的表的重复
在两种情况下,都实现了对表重复的透明性
分布式存储系统
定义
分布式存储系统是大量普通PC服务器通过Internet互联,对外作为一个整体提供存储服务
特性
可扩展
低成本
高性能
易用
挑战
分布式存储系统的挑战主要在于数据、状态信息的持久化,要求在自动迁移、自动容错、并发读写的过程中保证数据的一致性。分布式存储涉及的技术主要来自两个领域:分布式系统以及数据库。
数据分布
一致性
容错
负载均衡
事务与并发控制
易用性
压缩/解压缩
分类
非结构化数据,一般的文档
结构化数据, 存储在关系数据库中
半结构化数据,HTML文档
不同的分布式存储系统适合处理不同类型的数据:
分布式文件系统
非结构化数据,这类数据以对象的形式组织,不同对象之间没有关联,这样的数据一般称为Blob(二进制大对象)数据
典型的有Facebook Haystack 以及 Taobao File System
另外,分布式文件系统也常作为分布式表格系统以及分布式数据库的底层存储,如谷歌的GFS可以作为分布式表格系统Google Bigtable 的底层存储,Amazon的EBS(d性存储块)系统可以作为分布式数据库(Amazon RDS)的底层存储
总体上看,分布式文件系统存储三种类型的数据:Blob对象、定长块以及大文件
分布式键值系统
较简单的半结构化数据,只提供主键的CRUD(创建、读取、更新、删除)
典型的有Amazon Dynamo 以及 Taobao Tair
分布式表格系统
较复杂的半结构化数据,不仅支持CRUD,而且支持扫描某个主键范围
以表格为单位组织数据,每个表格包括很多行,通过主键标识一行,支持根据主键的CRUD功能以及范围查找功能
典型的有Google Bigtable 以及 Megastore,Microsoft Azure Table Storage,Amazon DynamoDB等
分布式数据库
存储结构化数据,一般是由单机关系数据库扩展而来
典型的包括MySQL数据库分片集群、Amazon RDS以及Microsoft SQL Azure
1、数据存储方式不同。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
2、扩展方式不同。
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。
因为数据存储在关系表中, *** 作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。
而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
3、对事务性的支持不同。
如果数据 *** 作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务 *** 作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在 *** 作的扩展性和大数据量处理方面。
——关系型数据库
——非关系型数据库
很多组织机构慢慢的在不同的服务器和地点部署SQLServer数据库——为各种应用和目的——开始考虑通过SQLServer集群的方式来合并。
将SQLServer实例和数据库合并到一个中心的地点可以减低成本,尤其是维护和软硬件许可证。此外,在合并之后,可以减低所需机器的数量,这些机器就可以用于备用。
当寻找一个备用,比如高可用性的环境,企业常常决定部署Microsoft的集群架构。我常常被问到小的集群(由较少的节点组成)SQLServer实例和作为中心解决方案的大的集群哪一种更好。在我们比较了这两个集群架构之后,我让你们自己做决定。
什么是Microsoft集群服务器
MSCS是一个WindowsServer企业版中的内建功能。这个软件支持两个或者更多服务器节点连接起来形成一个“集群”,来获得更高的可用性和对数据和应用更简便的管理。MSCS可以自动的检查到服务器或者应用的失效,并从中恢复。你也可以使用它来(手动)移动服务器之间的负载来平衡利用率以及无需停机时间来调度计划中的维护任务。
这种集群设计使用软件“心跳”来检测应用或者服务器的失效。在服务器失效的事件中,它会自动将资源(比如磁盘和IP地址)的所有权从失效的服务器转移到活动的服务器。注意还有方法可以保持心跳连接的更高的可用性,比如站点全面失效的情况下。
MSCS不要求在客户计算机上安装任何特殊软件,因此用户在灾难恢复的经历依赖于客户-服务器应用中客户一方的本质。客户的重新连接常常是透明的,因为MSCS在相同的IP地址上重启应用、文件共享等等。进一步,为了灾难恢复,集群的节点可以处于分离的、遥远的地点。
在集群服务器上的SQLServer
SQLServer2000可以配置为最多4个节点的集群,而SQLServer2005可以配置为最多8个节点的集群。当一个SQLServer实例被配置为集群之后,它的磁盘资源、IP地址和服务就形成了集群组来实现灾难恢复。
SQLServer2000允许在一个集群上安装16个实例。根据在线帮助,“SQLServer2005在一个服务器或者处理器上可以支持最多50个SQLServer实例,”但是,“只能使用25个硬盘驱动器符,因此如果你需要更多的实例,那么需要预先规划。”
注意SQLServer实例的灾难恢复阶段是指SQLServer服务开始所需要的时间,这可能从几秒钟到几分钟。如果你需要更高的可用性,考虑使用其他的方法,比如logshipping和数据库镜像。
单个的大的SQLServer集群还是小的集群
下面是大的、由更多的节点组成的集群的优点:
◆更高的可用新(更多的节点来灾难恢复)。
◆更多的负载均衡选择(更多的节点)。
◆更低廉的维护成本。
◆增长的敏捷性。多达4个或者8个节点,依赖于SQL版本。
◆增强的管理性和简化环境(需要管理的少了)。
◆更少的停机时间(灾难恢复更多的选择)。
◆灾难恢复性能不受集群中的节点数目影响。
下面是单个大的集群的缺点:
◆集群节点数目有限(如果需要第9个节点怎么办)。
◆在集群中SQL实例数目有限。
◆没有对失效的防护——如果磁盘阵列失效了,就不会发生灾难恢复。
◆使用灾难恢复集群,无法在数据库级别或者数据库对象级别,比如表,创建灾难恢复集群。
虚拟化和集群
虚拟机也可以参与到集群中,虚拟和物理机器可以集群在一起,不会发生问题。SQLServer实例可以在虚拟机上,但是性能可能会受用影响,这依赖于实例所消耗的资源。在虚拟机上安装SQLServer实例之前,你需要进行压力测试来验证它是否可以承受必要的负载。
在这种灵活的架构中,如果虚拟机和物理机器集群在一起,你可以在虚拟机和物理机器之间对SQLServer进行负载均衡。比如,使用虚拟机上的SQLServer实例开发应用。然后在你需要对开发实例进行压力测试的时候,将它灾难恢复到集群中更强的物理机器上。
集群服务器可以用于SQLServer的高可用性、灾难恢复、可扩展性和负载均衡。单个更大的、由更多的节点组成的集群往往比小的、只有少数节点的集群更好。大个集群允许更灵活环境,为了负载均衡和维护,实例可以从一个节点移动到另外的节点。
(1)应用目标不同。并行数据库系统的目标是充分发挥并行计算机的优势,利用系统中的各个处理机结点并行完成数据库任务,提高数据库系统的整体性能。分布式数据库系统主要目的在于实现场地自治和数据的全局透明共享,而不要求利用网络中的各个结点来提高系统处理性能。
(2)实现方式不同。在具体实现方法上,并行数据库系统与分布式数据库系统也有着较大的不同。在并行数据库系统中,为了充分利用各个结点的处理能力,各结点间可以采用高速网络连接。结点键的数据传输代价相对较低,当某些结点处于空闲状态时,可以将工作负载过大的结点上的部分任务通过高速网传送给空闲结点处理,从而实现系统的负载平衡。
但是在分布式数据库系统中,为了适应应用的需要,满足部门分布特点的需要,各结点间一般采用局域网或广域网相连,网络带宽较低,颠倒点的通信开销较大。因此,在查询处理时一般应尽量减少结点间的数据传输量。
(3)各结点的地位不同。在并行数据库系统中,各结点是完全非独立的,不存在全局应用和局部应用的概念,在数据处理中只能发挥协同作用,而不能有局部应用。在分布式数据库系统中,各结点除了能通过网络协同完成全局事务外,各结点具有场地自治性,每个场地使独立的数据库系统。每个场地有自己的数据库、客户、CPU等资源,运行自己的DBMS,执行局部应用,具有高度的自治性。
以上就是关于有哪些分布式数据库,实现最终一致性的(分布式数据库与集中式数据库的区别)全部的内容,包括:有哪些分布式数据库,实现最终一致性的(分布式数据库与集中式数据库的区别)、什么是分布式存储系统、什么叫分布式数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)