数据库死锁处理方法

数据库死锁处理方法,第1张

mysql数据死锁解决方法如下:

1、对于按钮等控件,点击后使其立刻失效,不让用户重复点击,避免对同时对同一条记录 *** 作。

2、使用乐观锁进行控制。乐观锁大多是基于数据版本(Version)记录机制实现。即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是 通过为数据库表增加一个“version”字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数 据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。乐观锁机制避免了长事务中的数据 库加锁开销(用户A和用户B *** 作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系统整体性能表现。Hibernate 在其数据访问引擎中内置了乐观锁实现。需要注意的是,由于乐观锁机制是在系统中实现,来自外部系统的用户更新 *** 作不受系统的控制,因此可能会造 成脏数据被更新到数据库中。

这个是属于系统遗留问题,也就是一种系统的保护机制。就是为了避免出现这种在线修改系统的 *** 作。

增加字段属于系统的修改 *** 作。尽量不要在线 *** 作,因为可能出现。未知的漏洞。一定要。离线。修改完毕,然后经过测试后。认为已经没有问题了。在。次日的凌晨发一个通知。停机维护。这样才能保证系统的正常运转。

如果在前期设置系统的时候就预留了。热升级的空间。这样才能达到在线 *** 作的目的,而且系统的金融群总是一部分先升级。

很多情况下,你需要使用系统里边的工具集。在线修改表格。原理其实非常的简单,新建的和原表的表格结构。要一模一样。对这个表格进行修改,然后把结构变更的日期。插入进去。而且还建议您尽量在业务的低缝隙进行修改。避免发生不可控的未知状况。

使用说明:

1、如果是用 MySQL + Apache,使用的又是 FreeBSD 网络 *** 作系统的话,安装时候你应按注意到FreeBSD的版本问题,在FreeBSD 的 30 以下版本来说,MySQL Source 内含的 MIT-pthread 运行是正常的,但在这版本以上,你必须使用 native threads。

2、如果在 COMPILE 过程中出了问题,请先检查你的 gcc版本是否在 281 版本以上,gmake 版本是否在375以上。

3、如果不是版本的问题,那可能是你的内存不足,请使用configure--with-low-memory 来加入。

4、如果要重新做你的configure,那么你可以键入rm configcache和make clean来清除记录。

5、把 MySQL 安装在 /usr/local 目录下,这是缺省值,您也可以按照你的需要设定你所安装的目录。

将那个字段设为主键

------解决方案--------------------------------------------------------

要不然

你只能在逻辑上做判断、先查询数据是否有当前的符号、如果有

就另填。没有的话,就插入

------解决方案--------------------------------------------------------

------解决方案--------------------------------------------------------

要是这个字段不是外键的话,可以设成主键,否则,可以由数据库的标识字段做主键,给这一列

加上唯一约束

------解决方案--------------------------------------------------------

主键或者unique

约束(这个oracle

有,不知sqlserver

有没有)。

这个好像不行吧。

------解决方案--------------------------------------------------------

设主键。用sequence

自增。设置主键

然后也可以写触发器做判断修改

加锁情况与死锁原因分析

为方便大家复现,完整表结构和数据如下:

CREATE TABLE `t3` (

`c1` int(11) NOT NULL AUTO_INCREMENT,

`c2` int(11) DEFAULT NULL,

PRIMARY KEY (`c1`),

UNIQUE KEY `c2` (`c2`)

) ENGINE=InnoDB

insert into t3 values(1,1),(15,15),(20,20);

在 session1 执行 commit 的瞬间,我们会看到 session2、session3 的其中一个报死锁。这个死锁是这样产生的:

1 session1 执行 delete  会在唯一索引 c2 的 c2 = 15 这一记录上加 X lock(也就是在MySQL 内部观测到的:X Lock but not gap);

2 session2 和 session3 在执行 insert 的时候,由于唯一约束检测发生唯一冲突,会加 S Next-Key Lock,即对 (1,15] 这个区间加锁包括间隙,并且被 seesion1 的 X Lock 阻塞,进入等待;

3 session1 在执行 commit 后,会释放 X Lock,session2 和 session3 都获得 S Next-Key Lock;

4 session2 和 session3 继续执行插入 *** 作,这个时候 INSERT INTENTION LOCK(插入意向锁)出现了,并且由于插入意向锁会被 gap 锁阻塞,所以 session2 和 session3 互相等待,造成死锁。

死锁日志如下:

INSERT INTENTION LOCK

在之前的死锁分析第四点,如果不分析插入意向锁,也是会造成死锁的,因为插入最终还是要对记录加 X Lock 的,session2 和 session3 还是会互相阻塞互相等待。

但是插入意向锁是客观存在的,我们可以在官方手册中查到,不可忽略:

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap

插入意向锁其实是一种特殊的 gap lock,但是它不会阻塞其他锁。假设存在值为 4 和 7 的索引记录,尝试插入值 5 和 6 的两个事务在获取插入行上的排它锁之前使用插入意向锁锁定间隙,即在(4,7)上加 gap lock,但是这两个事务不会互相冲突等待。

当插入一条记录时,会去检查当前插入位置的下一条记录上是否存在锁对象,如果下一条记录上存在锁对象,就需要判断该锁对象是否锁住了 gap。如果 gap 被锁住了,则插入意向锁与之冲突,进入等待状态(插入意向锁之间并不互斥)。总结一下这把锁的属性:

1 它不会阻塞其他任何锁;

2 它本身仅会被 gap lock 阻塞。

在学习 MySQL 过程中,一般只有在它被阻塞的时候才能观察到,所以这也是它常常被忽略的原因吧

GAP LOCK

在此例中,另外一个重要的点就是 gap lock,通常情况下我们说到 gap lock 都只会联想到 REPEATABLE-READ 隔离级别利用其解决幻读。但实际上在 READ-COMMITTED 隔离级别,也会存在 gap lock ,只发生在:唯一约束检查到有唯一冲突的时候,会加 S Next-key Lock,即对记录以及与和上一条记录之间的间隙加共享锁。

通过下面这个例子就能验证:

这里 session1 插入数据遇到唯一冲突,虽然报错,但是对 (15,20] 加的 S Next-Key Lock 并不会马上释放,所以 session2 被阻塞。另外一种情况就是本文开始的例子,当 session2 插入遇到唯一冲突但是因为被 X Lock 阻塞,并不会立刻报错 “Duplicate key”,但是依然要等待获取 S Next-Key Lock 。

有个困惑很久的疑问:出现唯一冲突需要加 S Next-Key Lock 是事实,但是加锁的意义是什么?还是说是通过 S Next-Key Lock 来实现的唯一约束检查,但是这样意味着在插入没有遇到唯一冲突的时候,这个锁会立刻释放,这不符合二阶段锁原则。这点希望能与大家一起讨论得到好的解释。

如果是在 REPEATABLE-READ,除以上所说的唯一约束冲突外,gap lock 的存在是这样的:

普通索引(非唯一索引)的S/X Lock,都带 gap 属性,会锁住记录以及前1条记录到后1条记录的左闭右开区间,比如有[4,6,8]记录,delete 6,则会锁住[4,8)整个区间。

对于 gap lock,相信 DBA 们的心情是一样一样的,所以我的建议是:

1 在绝大部分的业务场景下,都可以把 MySQL 的隔离界别设置为 READ-COMMITTED;

2 在业务方便控制字段值唯一的情况下,尽量减少表中唯一索引的数量。

锁冲突矩阵

前面我们说的 GAP LOCK 其实是锁的属性,另外我们知道 InnoDB 常规锁模式有:S 和 X,即共享锁和排他锁。锁模式和锁属性是可以随意组合的,组合之后的冲突矩阵如下,这对我们分析死锁很有帮助:

1、数据库锁表的意思:因为在数据库里,同一个数据可能有多个人来读取或更改,为了防止我更改的时候别人也同时更改,这是一般要锁住表不让别人改。

2、举个简单例子:在更新数据库记录的过程中,我是不希望别人也来更新我的这些记录的,像库存,做出库的时候,原数量100,我出了20,我就需要把数量更新到80;

在更新的过程中,别人又做了30的出库,如果在我更新的时候,别人先把库存更新到70,然后我又更新80,那数量就错误了。所以我更新的时候,我就需要锁定这条记录。这是数据行锁,排他锁。

扩展资料:

数据库锁表的必要条件:

1)互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。

2)请求和保持条件:指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。

3)不剥夺条件:指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。

4)环路等待条件:指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源,……,Pn正在等待已被P0占用的资源。

1、在mysql数据库中如何锁定一行数据,保证不被其他的 *** 作影响。

2、从对数据的 *** 作类型分为读锁和写锁。从对数据 *** 作的粒度来分:表锁和行锁。

3、现在我们建立一个表来演示数据库的行锁讲解。

4、行锁基本演示如下图所示。

5、如果两个会话 *** 作的是不同的行,就不会互相阻塞了。

以上就是关于数据库死锁处理方法全部的内容,包括:数据库死锁处理方法、mysql给表增加字段会锁表,怎样才可以不锁表吗、怎么实现对SQL Server数据库的字段进行加密和解密等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9478943.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存