回答的有点多请耐心看完。
希望能帮助你还请及时采纳谢谢
1事务的原理
事务就是将一组SQL语句放在同一批次内去执行,如果一个SQL语句出错,则该批次内的所有SQL都将被取消执行。MySQL事务处理只支持InnoDB和BDB数据表类型。
1事务的ACID原则
1(Atomicity)原子性: 事务是最小的执行单位,不允许分割。原子性确保动作要么全部完成,要么完全不起作用;
2(Consistency)一致性: 执行事务前后,数据保持一致;
3(Isolation)隔离性: 并发访问数据库时,一个事务不被其他事务所干扰。
4(Durability)持久性: 一个事务被提交之后。对数据库中数据的改变是持久的,即使数据库发生故障。
1缓冲池(Buffer Pool)
Buffer Pool中包含了磁盘中部分数据页的映射。当从数据库读取数据时,会先从Buffer Pool中读取数据,如果Buffer Pool中没有,则从磁盘读取后放入到Buffer Pool中。当向数据库写入数据时,会先写入到Buffer Pool中,Buffer Pool中更新的数据会定期刷新到磁盘中(此过程称为刷脏)。
2日志缓冲区(Log Buffer)
当在MySQL中对InnoDB表进行更改时,这些更改命令首先存储在InnoDB日志缓冲区(Log Buffer)的内存中,然后写入通常称为重做日志(redo logs)的InnoDB日志文件中。
3双写机制缓存(DoubleWrite Buffer)
Doublewrite Buffer是共享表空间的物理文件的 buffer,其大小是2MB是一个一分为二的2MB空间。
刷脏 *** 作开始之时,先进行脏页‘备份’ *** 作将脏页数据写入 Doublewrite Buffer
将Doublewrite Buffer(顺序IO)写入磁盘文件中(共享表空间) 进行刷脏 *** 作
4回滚日志(Undo Log)
Undo Log记录的是逻辑日志记录的是事务过程中每条数据的变化版本和情况
在Innodb 磁盘架构中Undo Log 默认是共享表空间的物理文件的Buffer
在事务异常中断,或者主动(Rollback)回滚的过程中 ,Innodb基于 Undo Log进行数据撤销回滚,保证数据回归至事务开始状态
5重做日志(Redo Log)
Redo Log通常指的是物理日志,记录的是数据页的物理修改并不记录行记录情况。(也就是只记录要做哪些修改,并不记录修改的完成情况) 当数据库宕机重启的时候,会将重做日志中的内容恢复到数据库中。
1原子性
Innodb事务的原子性保证,包含事务的提交机制和事务的回滚机制在Innodb引擎中事务的回滚机制是依托 回滚日志(Undo Log) 进行回滚数据,保证数据回归至事务开始状态
2那么不同的隔离级别,隔离性是如何实现的,为什么不同事物间能够互不干扰? 答案是 锁 和 MVCC。
3持久性
基于事务的提交机制流程有可能出现三种场景
1 数据刷脏正常一切正常提交,Redo Log 循环记录数据成功落盘持久性得以保证
2数据刷脏的过程中出现的系统意外导致页断裂现象 (部分刷脏成功),针对页断裂情况,采用Double write机制进行保证页断裂数据的恢复
3数据未出现页断裂现象,也没有刷脏成功,MySQL通过Redo Log 进行数据的持久化即可
4一致性
从数据库层面,数据库通过原子性、隔离性、持久性来保证一致性
2事务的隔离级别
Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别
脏读: 指一个事务读取了另外一个事务未提交的数据。
不可重复读: 在一个事务内读取表中的某一行数据,多次读取结果不同
虚读(幻读): 是指在一个事务内读取到了别的事务插入的数据,导致前后读取不一致。
2基本语法
-- 使用set语句来改变自动提交模式
SET autocommit = 0; /关闭/
SET autocommit = 1; /开启/
-- 注意:
--- 1MySQL中默认是自动提交
--- 2使用事务时应先关闭自动提交
-- 开始一个事务,标记事务的起始点
START TRANSACTION
-- 提交一个事务给数据库
COMMIT
-- 将事务回滚,数据回到本次事务的初始状态
ROLLBACK
-- 还原MySQL数据库的自动提交
SET autocommit =1;
-- 保存点
SAVEPOINT 保存点名称 -- 设置一个事务保存点
ROLLBACK TO SAVEPOINT 保存点名称 -- 回滚到保存点
RELEASE SAVEPOINT 保存点名称 -- 删除保存点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/
课堂测试题目
A在线买一款价格为500元商品,网上银行转账
A的yhk余额为2000,然后给商家B支付500
商家B一开始的yhk余额为10000
创建数据库shop和创建表account并插入2条数据
/
CREATE DATABASE `shop`CHARACTER SET utf8 COLLATE utf8_general_ci;
USE `shop`;
CREATE TABLE `account` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(32) NOT NULL,
`cash` DECIMAL(9,2) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8
INSERT INTO account (`name`,`cash`)
VALUES('A',200000),('B',1000000)
-- 转账实现
SET autocommit = 0; -- 关闭自动提交
START TRANSACTION; -- 开始一个事务,标记事务的起始点
UPDATE account SET cash=cash-500 WHERE `name`='A';
UPDATE account SET cash=cash+500 WHERE `name`='B';
COMMIT; -- 提交事务
# rollback;
SET autocommit = 1; -- 恢复自动提交
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3事务实现方式-MVCC
1什么是MVCC
MVCC是mysql的的多版本并发控制即multi-Version Concurrency Controller,mysql的innodb引擎支持MVVC。MVCC是为了实现事务的隔离性,通过版本号,避免同一数据在不同事务间的竞争,你可以把它当成基于多版本号的一种乐观锁。当然,这种乐观锁只在事务级别为RR(可重复读)和RC(读提交)生效。MVCC最大的好处,相信也是耳熟能详:读不加锁,读写不冲突,极大的增加了系统的并发性能。
2MVCC的实现机制
InnoDB在每行数据都增加两个隐藏字段,一个记录创建的版本号,一个记录删除的版本号。
在多版本并发控制中,为了保证数据 *** 作在多线程过程中,保证事务隔离的机制,降低锁竞争的压力,保证较高的并发量。在每开启一个事务时,会生成一个事务的版本号,被 *** 作的数据会生成一条新的数据行(临时),但是在提交前对其他事务是不可见的;对于数据的更新(包括增删改) *** 作成功,会将这个版本号更新到数据的行中;事务提交成功,新的版本号也就更新到了此数据行中。这样保证了每个事务 *** 作的数据,都是互不影响的,也不存在锁的问题。
3MVCC下的CRUD
SELECT:
当隔离级别是REPEATABLE READ时select *** 作,InnoDB每行数据来保证它符合两个条件:
1 事务的版本号 大于等于 创建行版本号
2 行数据的删除版本 未定义 或者大于 事务版本号
行创建版本号 事务版本号 行删除版本号
INSERT:
InnoDB为这个新行 记录 当前的系统版本号。
DELETE:
InnoDB将当前的系统版本号 设置为 这一行的删除版本号。
UPDATE:
InnoDB会写一个这行数据的新拷贝,这个拷贝的版本为 当前的系统版本号。它同时也会将这个版本号 写到 旧行的删除版本里。
————————————————
版权声明:本文为CSDN博主「@Autowire」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:>
原子性 *** 作:原子性在一个 *** 作是不可中断的,要么全部执行成功要么全部执行失败,有着“同生共死”的感觉。及时在多个线程一起执行的时候,一个 *** 作一旦开始,就不会被其他线程所干扰。
扩展资料:
redis的原子性:
Redis所有单个命令的执行都是原子性的,这与它的单线程机制有关;
Redis命令的原子性使得我们不用考虑并发问题,可以方便的利用原子性自增 *** 作 实现简单计数器功能;
redis 实现事务的原理:
批量 *** 作在发送 EXEC 命令前被放入队列缓存
收到 EXEC 命令后进入事务执行,事务中任意命令执行失败,其余的命令都不会被执行
在事务执行过程,其他客户端提交的命令请求不会插入到事务执行命令序列中
参考资料:
原子性是数据库的知识。举例子来说:我们要从银行的A账户转100元到B账户,需要两部 *** 作,即
1、从A账户中扣除100元
2、给B账户加100元
所谓原子性,就是要么这两个步骤都完成,要么一个步骤都不要完成,就是要么全部完成,要么就一点不要做,不能只做一部分。
锁是 *** 作系统概念,仍然举例说明:比如有一个账户A,现在有几个进程同时在访问,比如说是P1、P2、P3吧,并且这几个进程都需要进行对A账户读数,然后再修改A账户的余额,现在P1读取了A账户的余额,还没有写回去(称之为更新),显然这时候P2、P3不能读A账户(如果P2读数完后,然后把数据写回去,这时候P1又写回去,则P2的 *** 作被覆盖掉了),这时候就需要一种机制来保证同一时刻仅有一个进程在进行读写 *** 作,这个机制就称之为锁。
锁就是保证某个资源(可能是数据,也可能是CPU之类的硬件)在某个时刻仅有一个进程进行读写(多线程中也有同样的 *** 作)。
锁实现方法很多,比如给cpu寄存器置位,不允许进程切换,也有的cpu带有锁 *** 作的指令。
一.什么是事务
事务是应用程序中一系列严密的 *** 作,所有 *** 作必须成功完成,否则在每个 *** 作中所作的所有更改都会被撤消。也就是事务具有原子性,一个事务中的一系列的 *** 作要么全部成功,要么一个都不做。
事务的结束有两种,当事务中的所以步骤全部成功执行时,事务提交。如果其中一个步骤失败,将发生回滚 *** 作,撤消撤消之前到事务开始时的所以 *** 作。
二.事务的 ACID
事务具有四个特征:原子性( Atomicity )、一致性( Consistency )、隔离性( Isolation )和持续性( Durability )。这四个特性简称为 ACID 特性。
1 、原子性
事务是数据库的逻辑工作单位,事务中包含的各 *** 作要么都做,要么都不做
2 、一致性
事 务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。因此当数据库只包含成功事务提交的结果时,就说数据库处于一致性状态。如果数据库系统 运行中发生故障,有些事务尚未完成就被迫中断,这些未完成事务对数据库所做的修改有一部分已写入物理数据库,这时数据库就处于一种不正确的状态,或者说是 不一致的状态。
3 、隔离性
一个事务的执行不能其它事务干扰。即一个事务内部的 *** 作及使用的数据对其它并发事务是隔离的,并发执行的各个事务之间不能互相干扰。
4 、持续性
也称永久性,指一个事务一旦提交,它对数据库中的数据的改变就应该是永久性的。接下来的其它 *** 作或故障不应该对其执行结果有任何影响。
数据库系统必须维护事务的以下特性 ( 简称 ACID) :
原子性 (Atomicity)
一致性 (Consistency)
隔离性 (Isolation)
持久性 (Durability)
原子性 (Atomicity)
事务中的所有 *** 作要么全部执行,要么都不执行;
如果事务没有原子性的保证,那么在发生系统
故障的情况下,数据库就有可能处于不一致状
态。
事务在当今的企业系统无处不在,即使在高并发环境下也可以提供数据的完整性。一个事务是一个只包含所有读/写 *** 作成功的集合。
一个事务本质上有四个特点ACID:
Atomicity原子性
Consistency一致性
Isolation隔离性
Durability耐久性
原子性
原子性任务是一个独立的 *** 作单元,是一种要么全部是,要么全部不是的原子单位性的 *** 作。
一致性
一个事务可以封装状态改变(除非它是一个只读的)。事务必须始终保持系统处于一致的状态,不管在任何给定的时间并发事务有多少。
一致性有下面特点:
如果一个 *** 作触发辅助 *** 作(级联,触发器),这些也必须成功,否则交易失败。
如果系统是由多个节点组成,一致性规定所有的变化必须传播到所有节点(多主复制)。如果从站节点是异步更新,那么我们打破一致性规则,系统成为“最终一致性”。
一个事务是数据状态的切换,因此,如果事务是并发多个,系统也必须如同串行事务一样 *** 作。
在现实中,事务系统遭遇并发请求时,这种串行化是有成本的, Amdahl法则描述如下:它是描述序列串行执行和并发之间的关系。
“一个程序在并行计算情况下使用多个处理器所能提升的速度是由这个程序中串行执行部分的时间决定的。”
大多数数据库管理系统选择(默认情况下)是放宽一致性,以达到更好的并发性。
隔离性
事务是并发控制机制,他们交错使用时也能提供一致性。隔离让我们隐藏来自外部世界未提交的状态变化,一个失败的事务不应该破坏系统的状态。隔离是通过用悲观或乐观锁机制实现的。
耐久性
一个成功的事务将永久性地改变系统的状态,所以在它结束之前,所有导致状态的变化都记录在一个持久的事务日志中。如果我们的系统突然受到系统崩溃或断电,那么所有未完成已提交的事务可能会重演。
以上就是关于数据库的事务机制是什么全部的内容,包括:数据库的事务机制是什么、什么是程序的原子性、c++中关于原子性、锁的知识等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)