phoenix,impala,spark sql访问hbase数据库哪种工具性能最优

phoenix,impala,spark sql访问hbase数据库哪种工具性能最优,第1张

Spark SQL就是shark ,也就是SQL on Spark。如果没记错的话,shark的开发利用了hive的API,所以支持读取HBase。而且Spark的数据类型兼容范围大于Hadoop,并且包含了Hadoop所支持的任何数据类型。

在说HBase之前,我想再唠叨几句。做互联网应用的哥们儿应该都清楚,互联网应用这东西,你没办法预测你的系统什么时候会被多少人访问,你面临的用户到底有多少,说不定今天你的用户还少,明天系统用户就变多了,结果您的系统应付不过来了了,不干了,这岂不是咱哥几个的悲哀,说时髦点就叫“杯具啊”。\x0d\\x0d\其实说白了,这些就是事先没有认清楚互联网应用什么才是最重要的。从系统架构的角度来说,互联网应用更加看重系统性能以及伸缩性,而传统企业级应用都是比较看重数据完整性和数据安全性。那么我们就来说说互联网应用伸缩性这事儿对于伸缩性这事儿,哥们儿我也写了几篇博文,想看的兄弟可以参考我以前的博文,对于web server,app server的伸缩性,我在这里先不说了,因为这部分的伸缩性相对来说比较容易一点,我主要来回顾一些一个慢慢变大的互联网应用如何应对数据库这一层的伸缩。\x0d\\x0d\首先刚开始,人不多,压力也不大,搞一台数据库服务器就搞定了,此时所有的东东都塞进一个Server里,包括web server,app server,db server,但是随着人越来越多,系统压力越来越多,这个时候可能你把web server,app server和db server分离了,好歹这样可以应付一阵子,但是随着用户量的不断增加,你会发现,数据库这哥们不行了,速度老慢了,有时候还会宕掉,所以这个时候,你得给数据库这哥们找几个伴,这个时候Master-Salve就出现了,这个时候有一个Master Server专门负责接收写 *** 作,另外的几个Salve Server专门进行读取,这样Master这哥们终于不抱怨了,总算读写分离了,压力总算轻点了,这个时候其实主要是对读取 *** 作进行了水平扩张,通过增加多个Salve来克服查询时CPU瓶颈。一般这样下来,你的系统可以应付一定的压力,但是随着用户数量的增多,压力的不断增加,你会发现Master server这哥们的写压力还是变的太大,没办法,这个时候怎么办呢?你就得切分啊,俗话说“只有切分了,才会有伸缩性嘛”,所以啊,这个时候只能分库了,这也是我们常说的数据库“垂直切分”,比如将一些不关联的数据存放到不同的库中,分开部署,这样终于可以带走一部分的读取和写入压力了,Master又可以轻松一点了,但是随着数据的不断增多,你的数据库表中的数据又变的非常的大,这样查询效率非常低,这个时候就需要进行“水平分区”了,比如通过将User表中的数据按照10W来划分,这样每张表不会超过10W了。\x0d\\x0d\综上所述,一般一个流行的web站点都会经历一个从单台DB,到主从复制,到垂直分区再到水平分区的痛苦的过程。其实数据库切分这事儿,看起来原理貌似很简单,如果真正做起来,我想凡是sharding过数据库的哥们儿都深受其苦啊。对于数据库伸缩的文章,哥们儿可以看看后面的参考资料介绍。\x0d\\x0d\好了,从上面的那一堆废话中,我们也发现数据库存储水平扩张scale out是多么痛苦的一件事情,不过幸好技术在进步,业界的其它弟兄也在努力,09年这一年出现了非常多的NoSQL数据库,更准确的应该说是No relation数据库,这些数据库多数都会对非结构化的数据提供透明的水平扩张能力,大大减轻了哥们儿设计时候的压力。下面我就拿Hbase这分布式列存储系统来说说。\x0d\\x0d\一 Hbase是个啥东东? \x0d\在说Hase是个啥家伙之前,首先我们来看看两个概念,面向行存储和面向列存储。面向行存储,我相信大伙儿应该都清楚,我们熟悉的RDBMS就是此种类型的,面向行存储的数据库主要适合于事务性要求严格场合,或者说面向行存储的存储系统适合OLTP,但是根据CAP理论,传统的RDBMS,为了实现强一致性,通过严格的ACID事务来进行同步,这就造成了系统的可用性和伸缩性方面大大折扣,而目前的很多NoSQL产品,包括Hbase,它们都是一种最终一致性的系统,它们为了高的可用性牺牲了一部分的一致性。好像,我上面说了面向列存储,那么到底什么是面向列存储呢?Hbase,Casandra,Bigtable都属于面向列存储的分布式存储系统。看到这里,如果您不明白Hbase是个啥东东,不要紧,我再总结一下下:\x0d\\x0d\Hbase是一个面向列存储的分布式存储系统,它的优点在于可以实现高性能的并发读写 *** 作,同时Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。\x0d\\x0d\二 Hbase数据模型 \x0d\HBase,Cassandra的数据模型非常类似,他们的思想都是来源于Google的Bigtable,因此这三者的数据模型非常类似,唯一不同的就是Cassandra具有Super cloumn family的概念,而Hbase目前我没发现。好了,废话少说,我们来看看Hbase的数据模型到底是个啥东东。\x0d\\x0d\在Hbase里面有以下两个主要的概念,Row key,Column Family,我们首先来看看Column family,Column family中文又名“列族”,Column family是在系统启动之前预先定义好的,每一个Column Family都可以根据“限定符”有多个column下面我们来举个例子就会非常的清晰了。\x0d\\x0d\假如系统中有一个User表,如果按照传统的RDBMS的话,User表中的列是固定的,比如schema 定义了name,age,sex等属性,User的属性是不能动态增加的。但是如果采用列存储系统,比如Hbase,那么我们可以定义User表,然后定义info 列族,User的数据可以分为:info:name = zhangsan,info:age=30,info:sex=male等,如果后来你又想增加另外的属性,这样很方便只需要info:newProperty就可以了。\x0d\\x0d\也许前面的这个例子还不够清晰,我们再举个例子来解释一下,熟悉SNS的朋友,应该都知道有好友Feed,一般设计Feed,我们都是按照“某人在某时做了标题为某某的事情”,但是同时一般我们也会预留一下关键字,比如有时候feed也许需要url,feed需要image属性等,这样来说,feed本身的属性是不确定的,因此如果采用传统的关系数据库将非常麻烦,况且关系数据库会造成一些为null的单元浪费,而列存储就不会出现这个问题,在Hbase里,如果每一个column 单元没有值,那么是占用空间的。下面我们通过两张图来形象的表示这种关系:\x0d\\x0d\上图是传统的RDBMS设计的Feed表,我们可以看出feed有多少列是固定的,不能增加,并且为null的列浪费了空间。但是我们再看看下图,下图为Hbase,Cassandra,Bigtable的数据模型图,从下图可以看出,Feed表的列可以动态的增加,并且为空的列是不存储的,这就大大节约了空间,关键是Feed这东西随着系统的运行,各种各样的Feed会出现,我们事先没办法预测有多少种Feed,那么我们也就没有办法确定Feed表有多少列,因此Hbase,Cassandra,Bigtable的基于列存储的数据模型就非常适合此场景。说到这里,采用Hbase的这种方式,还有一个非常重要的好处就是Feed会自动切分,当Feed表中的数据超过某一个阀值以后,Hbase会自动为我们切分数据,这样的话,查询就具有了伸缩性,而再加上Hbase的弱事务性的特性,对Hbase的写入 *** 作也将变得非常快。\x0d\\x0d\上面说了Column family,那么我之前说的Row key是啥东东,其实你可以理解row key为RDBMS中的某一个行的主键,但是因为Hbase不支持条件查询以及Order by等查询,因此Row key的设计就要根据你系统的查询需求来设计了额。我还拿刚才那个Feed的列子来说,我们一般是查询某个人最新的一些Feed,因此我们Feed的Row key可以有以下三个部分构成,这样以来当我们要查询某个人的最进的Feed就可以指定Start Rowkey为,End Rowkey为来查询了,同时因为Hbase中的记录是按照rowkey来排序的,这样就使得查询变得非常快。\x0d\\x0d\三 Hbase的优缺点 \x0d\1 列的可以动态增加,并且列为空就不存储数据,节省存储空间\x0d\\x0d\2 Hbase自动切分数据,使得数据存储自动具有水平scalability\x0d\\x0d\3 Hbase可以提供高并发读写 *** 作的支持\x0d\\x0d\Hbase的缺点:\x0d\\x0d\1 不能支持条件查询,只支持按照Row key来查询\x0d\\x0d\2 暂时不能支持Master server的故障切换,当Master宕机后,整个存储系统就会挂掉\x0d\\x0d\四补充\x0d\1数据类型,HBase只有简单的字符类型,所有的类型都是交由用户自己处理,它只保存字符串。而关系数据库有丰富的类型和存储方式。\x0d\2数据 *** 作:HBase只有很简单的插入、查询、删除、清空等 *** 作,表和表之间是分离的,没有复杂的表和表之间的关系,而传统数据库通常有各式各样的函数和连接 *** 作。 \x0d\3存储模式:HBase是基于列存储的,每个列族都由几个文件保存,不同的列族的文件时分离的。而传统的关系型数据库是基于表格结构和行模式保存的 \x0d\4数据维护,HBase的更新 *** 作不应该叫更新,它实际上是插入了新的数据,而传统数据库是替换修改\x0d\5可伸缩性,Hbase这类分布式数据库就是为了这个目的而开发出来的,所以它能够轻松增加或减少硬件的数量,并且对错误的兼容性比较高。而传统数据库通常需要增加中间层才能实现类似的功能

hbase概念:  非结构化的分布式的面向列存储非关系型的开源的数据库,根据谷歌的三大论文之一的bigtable  高宽厚表  作用:  为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

  能干什么:  存储大量结果集数据,低延迟的随机查询。

  sql:  结构化查询语言  nosql:  非关系型数据库,列存储和文档存储(查询低延迟),hbase是nosql的一个种类,其特点是列式存储。

  非关系型数据库--列存储(hbase)  非关系型数据库--文档存储(MongoDB)  非关系型数据库--内存式存储(redis)  非关系型数据库--图形模型(graph)  hive和hbase区别  Hive的定位是数据仓库,虽然也有增删改查,但其删改查对应的是整张表而不是单行数据,查询的延迟较高。

其本质是更加方便的使用mr的威力来进行离线分析的一个数据分析工具。

  HBase的定位是hadoop的数据库,电脑培训>

hadoop的hdfs支持海量数据量存储

mapreduce支持对海量数据的分布式处理

oracle虽然可以搭建集群

但是当数据量达到一定限度之后查询处理速度会变得很慢

且对机器性能要求很高

其实这两个东西不是同类

hadoop是一个分布式云处理架构,倾向于数据计算

而oracle是一个关系型数据库,倾向于数据存储。要说比较可以比较hbase与oracle。

hbase是一种nosql数据库,列式数据库,支持海量数据存储,支持列的扩展,但是查询 *** 作较复杂,不如oracle这类关系型数据库简单,且只支持一个索引,但是Hbase在表结构设置合理情况下,查询速度跟数据量大小没有太大关系,即数据量的大小不会影响到查询速度,顺便说句Hbase查询速度可以达到ms级

1Mongodb bson文档型数据库,整个数据都存在磁盘中,hbase是列式数据库,集群部署时每个familycolumn保存在单独的hdfs文件中。

2Mongodb 主键是“_id”,主键上面可以不建索引,记录插入的顺序和存放的顺序一样,hbase的主键就是row key,可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在hbase内部,row key保存为字节数组。存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。

字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。要保持整形的自然序,行键必须用0作左填充。

3Mongodb支持二级索引,而hbase本身不支持二级索引

4Mongodb支持集合查找,正则查找,范围查找,支持skip和limit等等,是最像mysql的nosql数据库,而hbase只支持三种查找:通过单个row key访问,通过row key的range,全表扫描

5mongodb的update是update-in-place,也就是原地更新,除非原地容纳不下更新后的数据记录。而hbase的修改和添加都是同一个命令:put,如果put传入的row key已经存在就更新原记录,实际上hbase内部也不是更新,它只是将这一份数据已不同的版本保存下来而已,hbase默认的保存版本的历史数量是3。

6mongodb的delete会将该行的数据标示为已删除,因为mongodb在删除记录时并不是真把记录从内存或文件中remove,而是将该删除记录数据置空(写0或特殊数字加以标识)同时将该记录所在地址放到一个list列表“释放列表”中,这样做的好就是就是如果有用户要执行插入记录 *** 作时,mongodb会首先从该“释放列表”中获取size合适的“已删除记录”地址返回,这种方法会提升性能(避免了malloc内存 *** 作),同时mongodb也使用了bucket size数组来定义多个大小size不同的列表,用于将要删除的记录根据其size大小放到合适的“释放列表”中。Hbase的delete是先新建一个tombstonemarkers,然后读的时候会和tombstonemarkers做merge,在 发生major compaction时delete的数据记录才会真真删除。

7mongodb和hbase都支持mapreduce,不过mongodb的mapreduce支持不够强大,如果没有使用mongodb分片,mapreduce实际上不是并行执行的

8mongodb支持shard分片,hbase根据row key自动负载均衡,这里shard key和row key的选取尽量用非递增的字段,尽量用分布均衡的字段,因为分片都是根据范围来选择对应的存取server的,如果用递增字段很容易热点server的产生,由于是根据key的范围来自动分片的,如果key分布不均衡就会导致有些key根本就没法切分,从而产生负载不均衡。

9mongodb的读效率比写高,hbase默认适合写多读少的情况,可以通过hfileblockcachesize配置,该配置storefile的读缓存占用Heap的大小百分比,02表示20%。该值直接影响数据读的性能。如果写比读少很多,开到04-05也没问题。如果读写较均衡,03左右。如果写比读多,果断默认02吧。设置这个值的时候,你同时要参考hbaseregionserverglobalmemstoreupperLimit,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。

10hbase采用的LSM思想(Log-Structured Merge-Tree),就是将对数据的更改hold在内存中,达到指定的threadhold后将该批更改merge后批量写入到磁盘,这样将单个写变成了批量写,大大提高了写入速度,不过这样的话读的时候就费劲了,需要merge disk上的数据和memory中的修改数据,这显然降低了读的性能。mongodb采用的是mapfile+Journal思想,如果记录不在内存,先加载到内存,然后在内存中更改后记录日志,然后隔一段时间批量的写入data文件,这样对内存的要求较高,至少需要容纳下热点数据和索引。

以上就是关于phoenix,impala,spark sql访问hbase数据库哪种工具性能最优全部的内容,包括:phoenix,impala,spark sql访问hbase数据库哪种工具性能最优、为什么说hbase是一个面向列的数据库、北大青鸟java培训:Hbase知识点总结等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9484354.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存