SQLite创建的数据库有一种模式IN-MEMORY,但是它并不表示SQLite就成了一个内存数据库。IN-MEMORY模式可以简单地理解为,(2020 表述勘误:本来创建的数据库文件是基于磁盘的,现在整个文件使用内存空间来代替磁盘空间,没有了文件作为backingstore,不必在修改数据库后将缓存页提交到文件系统),其它 *** 作保持一致。也就是数据库的设计没有根本改变。
inmemory与tempdb是两种节约模式,节约的对象为(rollback)日志文件以及数据库文件,减少IO。inmemory将日志写在内存,并且去除数据库文件作为backingStore,缓存页不用提交到文件系统。tempdb只会在只会在脏的缓存页超过当前总量的25%才会同步刷写到文件,换句话说在临时数据库模式下,事务提交时并不总同步脏页,因此减少了IO数量,事务日志也受这种机制影响,所以在临时数据库模式下,事务日志是不是MEMORY并不重要。回过头来看,内存模式则是临时模式的一种极致,杜绝所有的IO。这两种模式都只能存在一个sqlite3连接,关闭时销毁。
提到内存,许多人就会简单地理解为,内存比磁盘速度快很多,所以内存模式比磁盘模式的数据库速度也快很多,甚至有人望文生意就把它变成等同于内存数据库。
它并不是为内存数据库应用而设计的,本质还是文件数据库。它的数据库存储文件有将近一半的空间是空置的,这是它的B树存储决定的,(2020 勘误:对于固定长度记录,页面使用率最大化,对于非自增计数键的索引,页面一般会保留20~60%的空间,方便插入)请参看上一篇SQLite存储格式。内存模式只是将数据库存储文件放入内存空间,但并不考虑最有效管理你的内存空间,其它临时文件也要使用内存,事务回滚日志一样要生成,只是使用了内存空间。它的作用应该偏向于临时性的用途。
(2020 补充:下面的测试有局限性,)
我们先来看一下下面的测试结果,分别往memory和disk模式的sqlite数据库进行1w, 10w以及100w条数据的插入,采用一次性提交事务。另外使用commit_hook捕捉事务提交次数。
(注:测试场景为在新建的数据库做插入 *** 作,所以回滚日志是很小的,并且无需要在插入过程中查找而从数据库加载页面,因此测试也并不全面)
内存模式

磁盘模式

在事务提交前的耗时 (事务提交后的总耗时):
1w 10w 100w
内存模式 004s 035s 360s
磁盘模式 006s (027s) 047s (072s) 395s (462s)
可以看到当 *** 作的数据越少时,内存模式的性能提高得越明显,事务IO的同步时间消耗越显注。
上图还有一组数据比较,就是在单次事务提交中,如果要为每条插入语句准备的话
1w 10w 100w
内存模式 019s 192s 1946s
磁盘模式 021s (035s) 206s (226s) 1988s (2041s)
我们从SQLite的设计来分析,一次插入 *** 作,SQLite到底做了些什么。首先SQLite的数据库 *** 作是以页面大小为单位的。在单条记录插入的事务中,回滚日志文件被创建。在B树中查找目标页面,要读入一些页面,然后将目标页面以及要修改的父级页面写出到回滚日志。 *** 作目标页面的内存映像,插入一条记录,并在页面内重排序(索引排序,无索引做自增计数排序,参看上一篇《SQLite数据库存储格式》)。最后事务提交将修改的页面写出到数据库文件,成功后再删除日志文件。在这过程中显式进行了2次写磁盘(1次写日志文件,1次同步写数据库),还有2次隐式写磁盘(日志文件的创建和删除),这是在 *** 作目录节点。以及为查找加载的页面读 *** 作。更加详细可以参看官方文档的讨论章节《Atomic Commit In SQLite》。
如果假设插入100条记录,每条记录都要提交一次事务就很不划算,所以需要批量 *** 作来减少事务提交次数。假设页面大小为4KB,记录长度在20字节内,每页可放多于200条记录,一次事务提交插入100条记录,假设这100条记录正好能放入到同一页面又没有产生页面分裂,这样就可以在单条记录插入事务的IO开销耗损代价中完成100条记录插入。
当我们的事务中,插入的数据越多,事务的IO代价就会摊得越薄,所以在插入100w条记录的测试结果中,内存模式和磁盘模式的耗时都十分接近。实际应用场合中也很少会需要一次插入100w的数据。有这样的需要就不要考虑SQLite。
(补充说明一下,事务IO指代同步数据库的IO,以及回滚日志的IO,只在本文使用)
除了IO外,还有没有其它地方也影响着性能。那就是语句执行。其实反观一切,都是在对循环进行优化。

for (i = 0; i < repeat; ++i)
{
exec("BEGIN TRANS");
exec("INSERT INTO ");
exec("END TRANS");
}

批量插入:

exec("BEGIN TRANS");
for (i = 0; i < repeat; ++i)
{
exec("INSERT INTO ");
}
exec("END TRANS");

当我们展开插入语句的执行

exec("BEGIN TRANS");
for (i = 0; i < repeat; ++i)
{
// unwind exec("INSERT INTO ");
prepare("INSERT INTO ");
bind();
step();
finalize();
}
exec("END TRANS");

又发现循环内可以移出部分语句

exec("BEGIN TRANS");
// unwind exec("INSERT INTO ");
prepare("INSERT INTO ");
for (i = 0; i < repeat; ++i)
{
bind();
step();
}
finalize();
exec("END TRANS");

这样就得到了批量插入的最终优化模式。
所以对sql语句的分析,编译和释放是直接在损耗CPU,而同步IO则是在饥饿CPU。
请看下图

分别为内存模式1w和10w两组测试,每组测试包括4项测试
1只编译一条语句,只提交一次事务
2每次插入编译语句,只提交一次事务
3只编译一条语句,但使用自动事务。
4每次插入编译语句,并使用自动事务。
可以看到测试项目4基本上就是测试项目2和测试项目3的结果的和。
测试项目1就是批量插入优化的最终结果。
下面是探讨内存模式的使用:
经过上面的分析,内存模式在批量插入对比磁盘模式提升不是太显注的,请现在开始关注未批量插入的结果。
下面给出的是磁盘模式01w和02w两组测试,每组测试包括4项测试

可以看到在非批量插入情况,sqlite表现很差要100秒来完成1000次单条插入事务,但绝非sqlite很吃力,因为cpu在空载,IO阻塞了程序。
再来看内存模式20w测试

可以看到sqlite在内存模式,即使在20w次的单条插入事务,其耗时也不太逊于磁盘模式100w插入一次事务。
01w 02w 20w
内存模式(非批量插入) 1587s
磁盘模式(非批量插入) 974s 19828s
编译1次插入语句 每次插入编译1次语句
内存模式(20w,20w次事务) 1110s 1587s
磁盘模式(100w,1次事务) 462s 2041s
对于互联网业务来说,传统的直接访问数据库方式,主要通过数据分片、一主多从等方式来扛住读写流量,但随着数据量的积累和流量的激增,仅依赖数据库来承接所有流量,不仅成本高、效率低、而且还伴随着稳定性降低的风险。
鉴于大部分业务通常是读多写少(读取频率远远高于更新频率),甚至存在读 *** 作数量高出写 *** 作多个数量级的情况。因此, 在架构设计中,常采用增加缓存层来提高系统的响应能力 ,提升数据读写性能、减少数据库访问压力,从而提升业务的稳定性和访问体验。
根据 CAP 原理,分布式系统在可用性、一致性和分区容错性上无法兼得,通常由于分区容错无法避免,所以一致性和可用性难以同时成立。对于缓存系统来说, 如何保证其数据一致性是一个在应用缓存的同时不得不解决的问题 。
需要明确的是,缓存系统的数据一致性通常包括持久化层和缓存层的一致性、以及多级缓存之间的一致性,这里我们仅讨论前者。持久化层和缓存层的一致性问题也通常被称为双写一致性问题,“双写”意为数据既在数据库中保存一份,也在缓存中保存一份。
对于一致性来说,包含强一致性和弱一致性 ,强一致性保证写入后立即可以读取,弱一致性则不保证立即可以读取写入后的值,而是尽可能的保证在经过一定时间后可以读取到,在弱一致性中应用最为广泛的模型则是最终一致性模型,即保证在一定时间之后写入和读取达到一致的状态。对于应用缓存的大部分场景来说,追求的则是最终一致性,少部分对数据一致性要求极高的场景则会追求强一致性。
为了达到最终一致性,针对不同的场景,业界逐步形成了下面这几种应用缓存的策略。
— 1 —
Cache-Aside
Cache-Aside 意为旁路缓存模式,是应用最为广泛的一种缓存策略。下面的图示展示了它的读写流程,来看看它是如何保证最终一致性的。在读请求中,首先请求缓存,若缓存命中(cache hit),则直接返回缓存中的数据;若缓存未命中(cache miss),则查询数据库并将查询结果更新至缓存,然后返回查询出的数据(demand-filled look-aside )。在写请求中,先更新数据库,再删除缓存(write-invalidate)。
1、为什么删除缓存,而不是更新缓存?
在 Cache-Aside 中,对于读请求的处理比较容易理解,但在写请求中,可能会有读者提出疑问,为什么要删除缓存,而不是更新缓存?站在符合直觉的角度来看,更新缓存是一个容易被理解的方案,但站在性能和安全的角度,更新缓存则可能会导致一些不好的后果。
首先是性能 ,当该缓存对应的结果需要消耗大量的计算过程才能得到时,比如需要访问多张数据库表并联合计算,那么在写 *** 作中更新缓存的动作将会是一笔不小的开销。同时,当写 *** 作较多时,可能也会存在刚更新的缓存还没有被读取到,又再次被更新的情况(这常被称为缓存扰动),显然,这样的更新是白白消耗机器性能的,会导致缓存利用率不高。
而等到读请求未命中缓存时再去更新,也符合懒加载的思路,需要时再进行计算。删除缓存的 *** 作不仅是幂等的,可以在发生异常时重试,而且写-删除和读-更新在语义上更加对称。
其次是安全 ,在并发场景下,在写请求中更新缓存可能会引发数据的不一致问题。参考下面的图示,若存在两个来自不同线程的写请求,首先来自线程 1 的写请求更新了数据库(step 1),接着来自线程 2 的写请求再次更新了数据库(step 3),但由于网络延迟等原因,线程 1 可能会晚于线程 2 更新缓存(step 4 晚于 step 3),那么这样便会导致最终写入数据库的结果是来自线程 2 的新值,写入缓存的结果是来自线程 1 的旧值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。
2、为什么先更新数据库,而不是先删除缓存?
另外,有读者也会对更新数据库和删除缓存的时序产生疑问,那么为什么不先删除缓存,再更新数据库呢?在单线程下,这种方案看似具有一定合理性,这种合理性体现在删除缓存成功。
但更新数据库失败的场景下,尽管缓存被删除了,下次读 *** 作时,仍能将正确的数据写回缓存,相对于 Cache-Aside 中更新数据库成功,删除缓存失败的场景来说,先删除缓存的方案似乎更合理一些。那么,先删除缓存有什么问题呢?
问题仍然出现在并发场景下,首先来自线程 1 的写请求删除了缓存(step 1),接着来自线程 2 的读请求由于缓存的删除导致缓存未命中,根据 Cache-Aside 模式,线程 2 继而查询数据库(step 2),但由于写请求通常慢于读请求,线程 1 更新数据库的 *** 作可能会晚于线程 2 查询数据库后更新缓存的 *** 作(step 4 晚于 step 3),那么这样便会导致最终写入缓存的结果是来自线程 2 中查询到的旧值,而写入数据库的结果是来自线程 1 的新值,即缓存落后于数据库,此时再有读请求命中缓存( step 5 ),读取到的便是旧值。
另外,先删除缓存,由于缓存中数据缺失,加剧数据库的请求压力,可能会增大缓存穿透出现的概率。
3、如果选择先删除缓存,再更新数据库,那如何解决一致性问题呢?
为了避免“先删除缓存,再更新数据库”这一方案在读写并发时可能带来的缓存脏数据,业界又提出了延时双删的策略,即在更新数据库之后,延迟一段时间再次删除缓存,为了保证第二次删除缓存的时间点在读请求更新缓存之后,这个延迟时间的经验值通常应稍大于业务中读请求的耗时。
延迟的实现可以在代码中 sleep 或采用延迟队列。显而易见的是,无论这个值如何预估,都很难和读请求的完成时间点准确衔接,这也是延时双删被诟病的主要原因。
4、那么 Cache-Aside 存在数据不一致的可能吗?
在 Cache-Aside 中,也存在数据不一致的可能性。在下面的读写并发场景下,首先来自线程 1 的读请求在未命中缓存的情况下查询数据库(step 1),接着来自线程 2 的写请求更新数据库(step 2),但由于一些极端原因,线程 1 中读请求的更新缓存 *** 作晚于线程 2 中写请求的删除缓存的 *** 作(step 4 晚于 step 3),那么这样便会导致最终写入缓存中的是来自线程 1 的旧值,而写入数据库中的是来自线程 2 的新值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。
这种场景的出现,不仅需要缓存失效且读写并发执行,而且还需要读请求查询数据库的执行早于写请求更新数据库,同时读请求的执行完成晚于写请求。足以见得,这种 不一致场景产生的条件非常严格,在实际的生产中出现的可能性较小 。
除此之外,在并发环境下,Cache-Aside 中也存在读请求命中缓存的时间点在写请求更新数据库之后,删除缓存之前,这样也会导致读请求查询到的缓存落后于数据库的情况。
虽然在下一次读请求中,缓存会被更新,但如果业务层面对这种情况的容忍度较低,那么可以采用加锁在写请求中保证“更新数据库&删除缓存”的串行执行为原子性 *** 作(同理也可对读请求中缓存的更新加锁)。 加锁势必会导致吞吐量的下降,故采取加锁的方案应该对性能的损耗有所预期。
— 2 —
补偿机制
我们在上面提到了,在 Cache-Aside 中可能存在更新数据库成功,但删除缓存失败的场景,如果发生这种情况,那么便会导致缓存中的数据落后于数据库,产生数据的不一致的问题。
其实,不仅 Cache-Aside 存在这样的问题,在延时双删等策略中也存在这样的问题。针对可能出现的删除失败问题,目前业界主要有以下几种补偿机制。
1、删除重试机制
由于同步重试删除在性能上会影响吞吐量,所以常通过引入消息队列,将删除失败的缓存对应的 key 放入消息队列中,在对应的消费者中获取删除失败的 key ,异步重试删除。这种方法在实现上相对简单,但由于删除失败后的逻辑需要基于业务代码的 trigger 来触发 ,对业务代码具有一定入侵性。
鉴于上述方案对业务代码具有一定入侵性,所以需要一种更加优雅的解决方案,让缓存删除失败的补偿机制运行在背后,尽量少的耦合于业务代码。一个简单的思路是通过后台任务使用更新时间戳或者版本作为对比获取数据库的增量数据更新至缓存中,这种方式在小规模数据的场景可以起到一定作用,但其扩展性、稳定性都有所欠缺。
一个相对成熟的方案是基于 MySQL 数据库增量日志进行解析和消费,这里较为流行的是阿里巴巴开源的作为 MySQL binlog 增量获取和解析的组件 canal(类似的开源组件还有 Maxwell、Databus 等)。
canal sever 模拟 MySQL slave 的交互协议,伪装为 MySQL slave,向 MySQL master 发送 dump 协议,MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal sever ),canal sever 解析 binary log 对象(原始为 byte 流),可由 canal client 拉取进行消费,同时 canal server 也默认支持将变更记录投递到 MQ 系统中,主动推送给其他系统进行消费。
在 ack 机制的加持下,不管是推送还是拉取,都可以有效的保证数据按照预期被消费。当前版本的 canal 支持的 MQ 有 Kafka 或者 RocketMQ。另外, canal 依赖 ZooKeeper 作为分布式协调组件来实现 HA ,canal 的 HA 分为两个部分:
那么,针对缓存的删除 *** 作便可以在 canal client 或 consumer 中编写相关业务代码来完成。这样,结合数据库日志增量解析消费的方案以及 Cache-Aside 模型,在读请求中未命中缓存时更新缓存(通常这里会涉及到复杂的业务逻辑),在写请求更新数据库后删除缓存,并基于日志增量解析来补偿数据库更新时可能的缓存删除失败问题,在绝大多数场景下,可以有效的保证缓存的最终一致性。
另外需要注意的是,还应该隔离事务与缓存,确保数据库入库后再进行缓存的删除 *** 作。 比如考虑到数据库的主从架构,主从同步及读从写主的场景下,可能会造成读取到从库的旧数据后便更新了缓存,导致缓存落后于数据库的问题,这就要求对缓存的删除应该确保在数据库 *** 作完成之后。所以,基于 binlog 增量日志进行数据同步的方案,可以通过选择解析从节点的 binlog,来避免主从同步下删除缓存过早的问题。
3、数据传输服务 DTS
— 3 —
Read-Through
Read-Through 意为读穿透模式,它的流程和 Cache-Aside 类似,不同点在于 Read-Through 中多了一个访问控制层,读请求只和该访问控制层进行交互,而背后缓存命中与否的逻辑则由访问控制层与数据源进行交互,业务层的实现会更加简洁,并且对于缓存层及持久化层交互的封装程度更高,更易于移植。
— 4 —
Write-Through
Write-Through 意为直写模式,对于 Write-Through 直写模式来说,它也增加了访问控制层来提供更高程度的封装。不同于 Cache-Aside 的是,Write-Through 直写模式在写请求更新数据库之后,并不会删除缓存,而是更新缓存。
这种方式的 优势在于读请求过程简单 ,不需要查询数据库更新缓存等 *** 作。但其劣势也非常明显,除了上面我们提到的更新数据库再更新缓存的弊端之外,这种方案还会造成更新效率低,并且两个写 *** 作任何一次写失败都会造成数据不一致。
如果要使用这种方案, 最好可以将这两个 *** 作作为事务处理,可以同时失败或者同时成功,支持回滚,并且防止并发环境下的不一致 。另外,为了防止缓存扰动的频发,也可以给缓存增加 TTL 来缓解。
站在可行性的角度,不管是 Write-Through 模式还是 Cache-Aside 模式,理想状况下都可以通过分布式事务保证缓存层数据与持久化层数据的一致性,但在实际项目中,大多都对一致性的要求存在一些宽容度,所以在方案上往往有所折衷。
Write-Through 直写模式适合写 *** 作较多,并且对一致性要求较高的场景,在应用 Write-Through 模式时,也需要通过一定的补偿机制来解决它的问题。首先,在并发环境下,我们前面提到了先更新数据库,再更新缓存会导致缓存和数据库的不一致,那么先更新缓存,再更新数据库呢?
这样的 *** 作时序仍然会导致下面这样线程 1 先更新缓存,最后更新数据库的情况,即由于线程 1 和 线程 2 的执行不确定性导致数据库和缓存的不一致。这种由于线程竞争导致的缓存不一致,可以通过分布式锁解决,保证对缓存和数据库的 *** 作仅能由同一个线程完成。对于没有拿到锁的线程,一是通过锁的 timeout 时间进行控制,二是将请求暂存在消息队列中顺序消费。
在下面这种并发执行场景下,来自线程 1 的写请求更新了数据库,接着来自线程 2 的读请求命中缓存,接着线程 1 才更新缓存,这样便会导致线程 2 读取到的缓存落后于数据库。同理,先更新缓存后更新数据库在写请求和读请求并发时,也会出现类似的问题。面对这种场景,我们也可以加锁解决。
另在,在 Write-Through 模式下,不管是先更新缓存还是先更新数据库,都存在更新缓存或者更新数据库失败的情况,上面提到的重试机制和补偿机制在这里也是奏效的。
— 5 —
Write-Behind
Write behind 意为异步回写模式,它也具有类似 Read-Through/Write-Through 的访问控制层,不同的是,Write behind 在处理写请求时,只更新缓存而不更新数据库,对于数据库的更新,则是通过批量异步更新的方式进行的,批量写入的时间点可以选在数据库负载较低的时间进行。
在 Write-Behind 模式下,写请求延迟较低,减轻了数据库的压力,具有较好的吞吐性。但数据库和缓存的一致性较弱,比如当更新的数据还未被写入数据库时,直接从数据库中查询数据是落后于缓存的。同时,缓存的负载较大,如果缓存宕机会导致数据丢失,所以需要做好缓存的高可用。显然,Write behind 模式下适合大量写 *** 作的场景,常用于电商秒杀场景中库存的扣减。
— 6 —
Write-Around
如果一些非核心业务,对一致性的要求较弱,可以选择在 cache aside 读模式下增加一个缓存过期时间,在写请求中仅仅更新数据库,不做任何删除或更新缓存的 *** 作,这样,缓存仅能通过过期时间失效。这种方案实现简单,但缓存中的数据和数据库数据一致性较差,往往会造成用户的体验较差,应慎重选择。
— 7 —
总结
在解决缓存一致性的过程中,有多种途径可以保证缓存的最终一致性,应该根据场景来设计合适的方案,读多写少的场景下,可以选择采用“Cache-Aside 结合消费数据库日志做补偿”的方案,写多的场景下,可以选择采用“Write-Through 结合分布式锁”的方案 ,写多的极端场景下,可以选择采用“Write-Behind”的方案。
数据库原理是指数据库系统的基本概念、结构、特点、功能、组成部分等方面的理论知识。数据库是一种存储和管理数据的软件系统,其基本目标是提供数据的安全性、完整性和可靠性。
数据库原理主要包括:
数据库的定义:数据库是一种按照特定规则组织起来的数据集合,可被计算机程序访问和处理。
2 数据库管理系统:数据库管理系统(DBMS)是一种软件系统,用于创建、维护和 *** 作数据库。
3 数据库范式:数据库范式是一种设计规则,用于确保数据库中的数据能够被正确地存储和检索。
4 数据库查询语言:数据库查询语言(SQL)是一种用于 *** 作数据库的标准命令语言。
5 数据库事务:数据库事务是一组相关的数据库 *** 作,在执行过程中,要么全部成功,要么全部失败。
6 数据库索引:数据库索引是一种数据结构,用于加速数据库查询 *** 作。
7 数据库连接:数据库连接是两个或多个数据库之间的逻辑关系,用于实现数据共享和协作。
8 数据库备份与恢复:数据库备份与恢复是指将数据库中的数据复制到其他位置以进行后续恢复 *** 作的过程。
以上是数据库原理的主要内容,掌握这些知识可以帮助我们更好地了解数据库系统的工作原理和运行机制。
Redis是一个开源的内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。
它支持多种类型的数据结构,如字符串(Strings),散列(Hashes),列表(Lists),集合(Sets),有序集合(SortedSets或者是ZSet)与范围查询,Bitmaps,和地理空间(Geospatial)索引半径查询。其中常见的数据结构类型有String、List、Set、Hash、ZSet这5种。
PHP缓存与静态化知识:
缓存原理:缓存工作时程序查询数据时候,会把相应的结果序列化后保存到文件中,以后同样查询语句就可以不用直接查询数据库而是从缓存文件中获得。使得程序运行速度得以大幅度提升。
按缓存模式分有:页面缓存、数据缓存。ADODB缓存是数据缓存、smarty是页面缓存(Adodb+Smarty黄金搭档)。
按缓存技术分有:普遍缓存技术数据缓存、页面缓存、时间触发缓存、内容触发缓存(当插入数据或更新数据时,强制更新缓存)静态缓存、DNS轮询(BIND是一款开放源码的DNS服务器软件);
内存缓存(减少数据库负载,提升访问速度)、php的缓冲器、MYSQL缓存、基于反向代理的Web缓存(如Nginx,SQUID,mod_proxy(apache2以上又分为mod_proxy和mod_cache))。
按缓存类型分有:缓存模块(Zend Cache、APC等)、HTML方式(CMS)、生成Cache文件、php内置缓存机制(Discuz)、缓存IE下载的文件
判断缓存是否改变:缓存文件时间超过了就会自动读取新的,不然就读取缓存文件。也可以在更新数据的同时用clear_cache函数清除你原来的缓存。
伪静态就是mod_rewrite,还有pathinfo方式、真静态就是利用缓冲机制,生成文件。
数据缓存,基本是memcache、代码缓存,基本是apc。
缓存模块实例:
APC:
全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”,但我个人觉得应该叫”另一个PHP缓存”。因为这个东西如果叫”可选PHP缓存”,容易给人一种可要可不要的,不怎么有用的错觉。
PHP APC的安装: 一般是下载源代码然后phpize来编译安装,安装完以后在加上phpini里加上 extension=apcso 这么一行就行了。
PHP APC的使用: APC的使用其实倒说不上APC是个优化器,自安装之日起,就默默地在后台为您的PHP应用服务了您的所有PHP代码会被缓存起来 另外,APC可提供一定的内存缓存功能但是这个功能并不是十分完美,有报告说如果频繁使用APC缓存的写入功能,会导致不可预料的错误如果想使用这个 功能,可以看看apc_fetch,apc_store等几个与apc缓存相关的函数 从PHP52开始,APC引入了一个小甜饼,解决了困扰大家已久的大文件上传的进度条问题。
PHP APC的高级使用,缓存期限: APC的缓存分两部分:系统缓存和用户数据缓存。
Redis缓存机制主要作用在于提高数据访问速度、减轻数据库压力、提高系统性能。但是,使用Redis缓存机制可能会影响软件的以下功能:
数据一致性:由于Redis缓存中的数据与数据库中的数据可能存在不一致的情况,这会导致用户在查询数据时看到不一致的结果。
数据过期:缓存数据有过期时间,如果缓存数据过期,需要重新从数据库中获取,这可能会影响查询速度。
数据持久化:Redis提供了RDB和AOF两种持久化策略,但在某些情况下,如意外宕机等,可能会导致缓存数据的丢失。
内存限制:Redis是基于内存的存储系统,当缓存数据量过大时,可能会消耗大量内存资源,影响软件其他功能的性能。
缓存穿透、缓存击穿和缓存雪崩:这些现象可能导致缓存系统承受较大压力,进而影响整个软件的性能和稳定性。
分布式环境:在分布式环境下,需要考虑缓存数据的同步和一致性问题,否则可能会导致软件功能异常。
缓存维护:需要定期对缓存进行维护,如清除无用的缓存数据,避免缓存数据过多影响系统性能。
在使用Redis缓存机制时,需要充分考虑这些可能影响软件功能的因素,并采取相应的措施进行优化。
以上就是关于sqlitememory原理全部的内容,包括:sqlitememory原理、如何保证数据库缓存的最终一致性、数据库原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)