随着互联网的迅猛发展,数据库系统在网络环境下的面临着一系列威胁如病毒感染、黑客攻击等。下文是我为大家搜集整理的关于网络数据库安全论文范文的内容,欢迎大家阅读参考!
网络数据库安全论文范文篇1
浅论计算机网络数据库安全
摘 要文章阐述了网络数据库的安全因素,并且对网络数据库的安全防范措施进行了探讨。
关键词计算机数据库;网络环境;分析;安全
经过目前网络环境下,网络信息安全是一个亟待解决的重要问题,而计算机数据库的安全问题,又是其核心和关键问题,它直接关系到网络信息管理系统的整体的安全性。所以,为了保证网络信息系统高效、稳定、安全的运行,科学、合理的防范措施是网络数据库技术研究的重点内容。
一、网络数据库的模型构建
网络数据库的基础是后台数据库,其访问控制功能是由前台程序所提供。查询、存储等 *** 作的信息集合是由浏览器完成的,数据库在网络环境下,其特点是实现数据信息的共享,同时能够实现访问控制和最小冗余度,保持数据的一致性和完整性,图1是网络数据库的构建模型图如下
该模型是在网络技术结合数据库技术的基础上构建的,具体是由三层结构组成,包括数据库服务器、应用服务器和WEB服务器、浏览器等。整个系统和用户连接的接口,是通用的浏览器软件。作为第一层的客户端,浏览器的功能是为用户提供信息的输入,将代码转化为网页,提供交互功能,同时处理所提出的各种请求。而第二层的WEB服务器是作为后台,通过对相应的进程进行启动,来响应各种请求,同时生成代码处理各种结果,若数据的存取也在客户端请求的范围内,则数据库服务器必须配合WEB服务器,才能对这一请求共同进行完成。第三层数据库服务器对数据库能进行有效的管理,对不同的SQL服务器发出的请求起到协调的功能。
二、分析网络数据库安全性
1、分析数据安全性
网络数据库是信息管理系统的核心部分,其安全性能会对数据库中数据的安全起到直接的影响作用,由于很多重要的数据保存在数据库服务器上,例如一些账务数据、金融数据、还有一些工程数据、技术数据、涉及到规划和战略发展的决策性数据等等,属于机密信息,严禁非法访问,对外必须严格保密的数据等。而针对企业和公司,内部资源的筹划、对外交易的进行、日常业务的运作等等,必须依赖网络数据库进行,所以数据的安全性至关重要。
2、分析系统的安全性
网络数据库是否安全,直接决定了服务器主机和局域网的安全性能,数据库系统配置的“可从端口寻址的”,表示只要具备数据的使用权限及适合的查询工具,都可直接连接数据库及服务器端口,而针对 *** 作系统的安全检测,可巧妙避开。而多数数据库还具有公开的密码和默认号,而这种默认账号的权限非常高,既可访问数据库的各级资源,同时还可按照指令对 *** 作系统进行 *** 作,甚至还能开启后门,对监听程序进行存放,进而获得相关口令,对整个局域网进行控制,产生较严重的危害性。
3、分析影响数据库的安全因素
数据库服务器是网络信息系统的核心部分,里面有大量敏感的和重要的信息存在,所以数据库的安全性对保存的数据的安全性有着直接的影响。网络数据库不仅有着较大的处理量,较集中的数据信息,同时数据有着非常频繁的更新,用户访问量也非常巨大。所以,对网络数据安全带来威胁的影响因素有:
(1)用户没有执行正确的访问 *** 作,造成数据库发生错误;
(2)人为对数据库进行破坏,造成数据库不能恢复正常;
(3)非法访问机密信息,而表面又不留任何痕迹;
(4)通过网络,用户对数据库进行访问时,会受到各种搭线窃听技术的攻击;
(5)用户采取非法手段,对信息资源进行窃取;
(6)在未被授权的情况下,对数据库进行修改,造成数据失真现象严重;
面对以上种种威胁,只进行网络保护还根本不够,由于和其他系统在结构上有着本质的区别,数据库中所含有的各种数据敏感级别和重要程度不同,同时还具有共享功能,为拥有各种特权的用户提供服务,所以它对安全性的要求更广,也更为严格,不仅仅需要对联机网络、外部设备等实行物理保护,为防止敏感数据被盗用,同时对非法访问进行预防,还必须采取其他有效措施,以实现数据的一致性和完整性。
三、对网络数据库实行安全防范的措施
目前所采取的各种防范策略中,往往还不全面和具体,无法真正实现数据库的安全保障。所以在网络环境下,针对数据库的安全问题,应从日常的维护和开发,系统的设计等整体方面进行考虑和设计,建立各种安全机制,形成整体的安全策略。
1、研发信息管理人员应转变设计观念
首先研发信息管理系统的人员,必须转变观念,改变以往的只对信息管理系统功能进行重视的错误看法,综合考虑系统的安全性,彻底评估所要开发的系统和软件,从后台数据库系统及前台开发工具,以及软件和硬件的实施环境等方面,查找信息系统中潜在的安全隐患,避免因为硬件环境及开发工具的不合适,造成数据库的泄密,进而使整个系统出现不稳定现象。
2、系统管理和维护人员应综合考虑数据库安全性
系统管理和维护人员,必须对数据库的安全性进行全面的考虑,具体涵盖以下两点内容:
1)外围层的安全
主要包括网络安全和计算机系统安全,而来自病毒的侵犯是最主要的威胁,所以为了对整个系统的正常运行做出保证,必须规避外层中病毒的扩散和隐藏及入侵,采用综合治理方法,将防、杀、管结合在一起,对网络数据库系统的虚拟专用网进行构筑,采用技术,使网络路由的传输安全性和接入安全性得到保障,利用防火墙技术,实现网段间隔离及网间隔离,既避免系统遭受非法入侵,同时也使网络边界安全得到保障。
同时,网路数据库外围安全重点是在WEB服务器及 *** 作系统上,既要进行物理保护,同时还应进行应用服务器的保护,通过加密等方式,预防在传输过程中,数据被篡改或监听。因为该层对数据库自身的加密并为涉及,所以不能直接进行文件的加密,也无法使用密钥管理。同时由于主要是以WEB浏览器服务输出进行该层的运行程序,所以在ASP等具体应用软件上,更要实现其安全性能。
2)核心层安全
在整个网路数据库系统中,应用软件和数据库是重要的核心组成部分,若滥用、非法复制、窃取、篡改、丢失软件和数据,将会对系统造成毁灭性的打击,严重的会危害到社会安全。所以,我们必须进行控制用户访问权限,从数据库的加密、恢复和备份、数据分级控制等几个方面,来进行安全防范,使数据库管理系统的完整性和独立性得到保障。数据分级是一种简单易行的 *** 作方法,可对数据库实行信息流控制。采用加密控制,通过加密数据库文件,提供几种不同速度和安全强度的加解密算法,为用户提供合理的设置。
四、结语
伴随着计算机技术的迅猛发展和不断更新换代,各种建立在Internet及计算机上的信息管理系统已经成为重要的手段,支撑和完成各种事物的运作。在网络环境下,开发和使用信息管理系统的过程中,必须重点考虑安全问题,这样才能为整个数据库服务器的数据安全提供保障,以实现一种预期的效益,更好的为广大用户服务。
参考文献:
[1]徐莉春梅网络数据库的安全漏洞及解决方法[J]福建电脑,2007(12)
[2]钱菁网络数据库安全机制研究[J]计算机应用研究,2010(12)
网络数据库安全论文范文篇2
浅谈网络数据库安全策略
摘 要: 主要对现今网络环境中数据库所面临的安全威胁进行详尽论述,并由此全面地分析提高网络数据库安全性的解决对策。
关键词: 网络;数据库;安全对策
随着网络在21世纪社会当中的普及发展,越来越多的企业逐渐地 参与进来,并且将企业的核心逐渐的转向互联网,在地理区域内分散的部门和公司以及厂商对于数据库的应用需求明显呈现出过旺的趋势,在数据库的管理系统当中逐渐的从单机有力的扩展到了整个网络环境,针对数据的收集和储存以及处理与后期的传播方式都从集中性迈向了全面分布式模式。企业在使用数据库管理系统的时候,尤为重视的是数据库信息的安全性。
1 网络数据库安全机制
网络数据库的基础是计算机的后台数据库,在加上前台程序所以提供的访问控制,对于数据的储存和查询以及信息之间的集合 *** 作都可以通过有效的浏览器进行逐步完成。当前信息处理网络环境当中,有效的将大量数据信息进行多用户的共享是数据库存在的最大特点,然而与此同时对于数据的完整性以及一致性都有着有效的保障,有力的实现了最小程度的访问控制。
网络数据库所采用的两个典型的模式是B/S模式和C/S模式。C/S所采用的模式主要分为三层结构:① 首先是客户机;② 应用服务器;③ 数据库服务器,主要表现形式的是由客户机将数据传输到应用服务器,然后再次传输到数据库的服务器当中。B/S所采用的模式其主要也是分为三层结构:① 首先是浏览器;② Web服务器;③ 数据库服务器,主要表现形式如上所述。由此我们可以看出,这两种网络数据库模式在结构上存在很大程度的共同点,它们全部都涉及到了网络和系统软件以及应用软件。
2 各层安全机制详述
21 网络系统安全机制
如果数据库受到了外部恶意的信息的攻击侵入,首先是从网络系统开始进行攻击入侵,由此我们可以判断数据库安全的第一道保护屏障就是网络系统的正常安全。我们仅站在技术角度而言,可以将其大致的分成其防入侵检测以及协作式入侵检测技术等。下面我们分别阐述:
首先,计算机系统当中都安装有防火墙,防火墙的广泛运用俨然成为了现今一种最基本的防范措施。防火墙所起到的主要作用是对可信任的网络以及不可信任的网络之间的访问渠道进行有效的监控,针对内部网络和外部网络建立一道有效的防护措施屏障,将外部网络当中的非法访问进行有效的拦截并且将内部信息进行有效的阻止防止信息外流。防火墙对于外部的入侵具有强有力的防范控制,但是对于网络内部产生的非法 *** 作却无法进行阻拦和加以有效控制。
其次,关于入侵检测,是近几年逐渐发展壮大的一种有力的防范技术,它主要采用了统计技术和规则技术以及网络通信技术与人工智能等技术和方法进行有效的综合在一起的防范技术,入侵检测所起到的主要作用是对网络和计算机系统进行有效的监控,能够及时有效的反映出是否有被入侵或者滥用的情况。
最后,针对协作式入侵检测技术,对于以往独立的入侵检测系统的不足点和诸多方面的缺陷,协作式入侵检测技术都有着极好的弥补,其系统当中IDS是基于一种统一的规范,入侵检测组件之间的信息都有效的自动进行交换。而且通过信息的自动交换可以对入侵信息进行有效的检查,并且还能够有效的在不同的网络环境当中进行运用。
22 服务器 *** 作系统安全机制
目前,市场上计算机有很大一部分都是Windows NT以及Unix *** 作系统,其所具有的安全级别一般的处于C1、C2级。主要的安全技术可以归纳为以下三点:
① *** 作系统安全策略。主要是在本地计算机的安全设置上进行配置,主要保障的安全策略包括密码策略和账户锁定策略以及审核策略和IP安全策略等一系列的安全选项,其具体运用可以体现在用户的账户以及口令和访问权限等诸多方面。
② 安全管理策略。主要是网络管理员对系统安全管理所采取的方法和策略。因为, *** 作系统和网络环境各不相同,所以需要采取的安全管理策略也都存在着各不相同的方法,但是主要核心依旧是有力的保障服务器的安全以及对各类用户的权限进行分配。
③ 数据安全策略。这点主要具有以下几点体现:数据的加密技术和对数据进行备份以及数据储存当中的安全性等。由此可以采用的技术有很多,其中主要有:认证、IPSec ,SSL ,TLS,等技术。
23 数据库管理系统安全机制
数据库系统在 *** 作系统当中都是以文件的形式进行有效的管理。所以入侵数据库的人员可以对 *** 作系统当中的漏洞及其数据库当中的文件进行直接**,还可以利用OS工具进行违法 *** 作和对数据库文件内容进行篡改。所存在的这种隐患数据库用户一般很难以察觉,针对这种漏洞进行分析被认为是BZ级别的安全技术措施。数据库的层次安全技术,主要针对当前两个层次已经被破坏的情况下进行有效的解决,保障数据库安全性。那么对于数据库的管理系统就必须要求有一套较为强有力的安全机制。
24 客户端应用程序安全机制
网络数据库安全性的重要方面是客户端应用程序。具有强有力和实现比较快捷方便是其主要的特点,而且还能够根据需求的变化很容易做出相对应的更改。客户端的应用程序不仅可以有效的控制用户的合法登陆以及身份的验证,而且还能够对数据进行直接的设置。想要应用系统具有更好的安全性,首先就必须在应用程序上进行行之有效的控制。另外,针对客户应用程序的编写也具有着较大的灵活性,与此同时还有很多的技巧性,可以有效全面的实现管理的灵活和安全。
3 使用DBMS安全机制防范网络攻击
有很多大型的DBMS对于数据库的安全防范技术的提供相对来讲都是非常完善的,而且针对提高数据库的安全性也有着明显的积极作用。
31 系统的认证和授权
认证是验证系统中请求服务的人或应用程序身份的过程;授权是将一个通过身份认证的身份映射已经授予数据库用户的许可的过程,该过程限制用户在数据库内部允许发生的行为。对SQL Server数据库服务器进行权限设置时,应该为DPeb程序单独设立一个受限的登录,指定其只能访问特定的数据库,并为该特定数据库添加一个用户,使之与该受限的登录相连,并严格设定该用户的数据库权限。
32 数据的备份与恢复
通过数据备份可以在系统发生故障的时候,管理员可以在最短的时间内将数据进行恢复,保持原先所处理的状态,对于数据的一个完整性和一致性有着强有力的保障。通常对于数据库的备份一般都是采取以下几种形式备份形式:其一静态备份;其二动态备份;其三逻辑备份等。然而对于数据库的恢复,可以采取磁盘镜像和数据库备份文件以及数据库在线日志等诸多方式进行有效的恢复。
33 全面有效的加强审查
通过有效的审查,用户可以将数据库当中所进行的所有 *** 作都能够得以有效的自动记录,然后将所记录的信息全部保存在审查的日志当中,对于审查进行全面加强利用可以有效的跟踪信息,将数据库现有状况的一系列事件都进行充分的重现。因此,就可以有效的找出非法存取数据的人员以及存取信息的时间和内容等线索,这样就方便有效的追查有关责任,与此同时关于系统安全方面的弱点和漏洞审查也可以有效的进行发现。
4 总结
现代社会正处于一个不断发展的阶段,网络信息技术也有着空前的发展。然而互联网技术的不断高速发展,其网络数据库的安全性更是当今不断发展的主要问题,随着现代网络入侵系统手段的不断提高,其所采用的安全技术也在不断的进一步提升。只有对所出现的问题进行不断的分析和研究,总结经验进而全面有效的处理出现的一系列的新问题。总之,计算机网络数据库的安全防范是新时期一个永久性的重要问题,只有全面的通过科学合理的安全防范手段以及在后期的发展过程中进行不断的改进和完善,才能够更好的将系统的安全可靠性进行有效的全面提高。
参考文献:
[1]周世忠,浅谈网络数据库安全研究与应用[J]电脑知识与技术,2010(05)
[2]戴雪蕾,基于SQL SERVER的网络数据库安全管理[J]网络安全技术与应用,2009(04)
[3]梁建民,网络数据库的安全因素分析和预防措施探讨[J]光盘技术,2008(09)
1 网络数据库安全论文
2 关于安全教育论文范文
3 数字图书馆论文参考范文
4 优秀毕业论文范文
5 技术类论文范文
摘 要:本文基于笔者多年从事计算机应用的相关工作经验,以基于Oracle的数据库设计与查询检索为研究对象,结合图书馆数据库设计案例探讨了基于Oracle的数据库设计和查询检索方法,并在最后结合笔者工作实践给出了4点结论,全文是笔者长期工作实践基础上的理论升华,相信对从事相关工作的同行能有所裨益。
关键词:数据库设计 Oracle 案例
中图分类号:TP3 文献标识码:A 文章编号:1672-3791(2012)05(a)-0009-02
1 Oracle数据库与SQL概述
Oracle数据库是Oracle公司所研制和开发的一个关系数据库系统。经过几十年的发展,其功能和性能不断完善,己成为功能最齐全最受欢迎的数据库系统。Oracle系统由Oracle的核心,SQLPLUS接口、主语言接口以及各种系统实用程序组成。Oracle是目前应用最广泛的数据库系统。一个完整的数据库系统包括系统硬件、 *** 作系统、网络层、DBMS(数据库管理系统)、应用程序与数据,各部分之间是互相依赖的,对每个部分都必须进行合理的配置、设计和优化才能实现高性能的数据库系统。
SQL语言早在1973年就被提出来了,当时它仅作为关系数据库的交互式存取的查询语言。这种语言也较多的采用了数学符号,后经修改在1974年发展成SEQUEL。SEQUEL语言在结构上更类似于英语,这样更便于人们的掌握与使用。SQL语言从它一问世就受到人们广泛重视与欢迎。近年来,SQL语言己成为标准的数据库语言,现已有一百多个数据库管理产品支持SQL语言。SQL语言有如下特点。
(1)非结构程度高。用户在使用计算机完成系统工作时,是使用系统所提供的语言来表达或描述自己处理要求的。例如常用的FORTRAN、COBOL等都是系统所提供的用户语言。用户使用这些语言来编写程序,然后通过程序的执行来完成自己所要做的工作。如果系统提供的用户语言功能强,用户使用起来就方便得多,描述处理要求也容易。而非过程化语言的特点就是用户只需在程序中指出要干什么,至于如何干,用户不用在程序中指出。这由系统决定与完成。SQL是一种非过程化程度相当高的语言,用户只需在程序中指出要做什么就可以了。
(2)用户性能好。衡量一个语言好坏的一个标准是用户性能的好坏。所谓用户性能好是值一种语言在被一个新用户学习掌握时,用户不必花费太多的时间就能学会,并且很快就能熟练的掌握和使用。经过实验,SQL语言是一种用户性能非常好的语言,它非常便于用户学习与掌握。
(3)语言功能强。SQL语言是一种关系数据库语言。关系数据库分为两大类,一类是关系代数语言,另一种是关系演算语言。这两类语言在结构上具有不同的特点,各自具有自己的长处。而SQL语言具有两类语言的特点。因而SQL语言是一种功能很强的语言。
(4)提供有视图数据结构。SQL语言可以对两种基本数据结构进行 *** 作。一种称之为表,另一种是视图。通常将表定义为基本关系,视图定义为虚关系。虚关系在数据中不实际存放。在SQL语言中,用户可以对基本关系进行 *** 作,也可以对视图进行 *** 作,也可以对视图进行 *** 作。当对视图进行 *** 作时,由系统转换成基本关系的 *** 作。
(5)两种使用方式。SQL语言可以通过两种方式使用,一种是命令方式,另一种是程序方式。采用命令方式使用SQL时,用户通过交互式的方式,每输入一条命令,系统就会执行该命令,并且显示执行的结果。SQL语言还可以镶入在象COBOL、FORTRAN、C等高级语言中,组成一个完整的程序。用户根据自己不同的需要,灵活的选择相应的使用方式,以满足不同的要求。
在信息产业领域随着技术的不断进步,特别是计算机和通信网络技术的发展,大大开拓了数据库应用的领域并巨大推动了数据库管理技术的发展。
2 数据库设计案例分析
下面以图书馆数据库设计为例使用Oracle *** 作系统进行功能分析。
关系数据库的特点之一就是用表的方式组织数据。通常这种表称之为关系。表是语言存放数据,查找数据以及更新数据的基本数据。这种表与我们日常生活中所见的表非常相似,但不完全相同。在语言中,表有其严格的定义,它是一种二维表格。对于这种表有如下几点规定。
(1)每个表都有一个名字,通常称为表名或关系名。
(2)表中的一行称之为一个元组,它相当于一个记录。
(3)一个表可以由若干列组成,表的每一列必须命名唯一,即表中每一列都有一个名字,同一表中不允许有相同的名字。
(4)同一列的数据必须具有相同的数据类型。
(5)表中的列值必须似不可分割的基本数据项。
建表:依次建立图书、读者、借阅3个表。
建立图书表,该表记录了图书的总编号、书名、作者、出版单位、单价的信息,在表结构中输入信息,得到如下的表结构如表1。
建立读者表,该表记录了读者的借书证号、单位、姓名、职称、地址的信息,表结构如表2。
建立借阅表,该表记录了借书证号、总编号、借书日期的信息,表结构如表3。
3 单表查询
使用查询功能SQL语言中最主要,最核心的部分是它的查询功能。所谓查询就是从数据库中提取满足用户指定条件的数据。查询是由SELECT命令实现的。在SQL中,许多其他 *** 作也涉及到SELECT命令。例如插入一组数据时,可以将SELECT命令查询到的数据增加到一个表中,视图定义也使用SELECT命令将满足一组条件的数据构成一个视图等等。查询虽然只使用SELECT命令,但由于它能反映不同的查询要求,因此它是SQL语言中最复杂的命令。在查询过程中仅涉及到一个表的查询称为基本查询或一元查询。
(1)查询所有书籍的书名、作者、出版单位、单价。
SQL语言为:select书名,作者,出版单位,单价。
from图书。
(2)查询出版单位是清华大学出版社的图书的分类号、书名、作者、单价。
在开始演示之前,我们先介绍下两个概念。
概念一,数据的可选择性基数,也就是常说的cardinality值。
查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。
比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。
那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。
概念二,关于HINT的使用。
这里我来说下HINT是什么,在什么时候用。
HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。
比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?
来看下具体演示
譬如,以下两条SQL,
A:
select from t1 where f1 = 20;B:
select from t1 where f1 = 30;如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。
这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。
那回到正题上,MySQL 80 带来了几个HINT,我今天就举个index_merge的例子。
示例表结构:
mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+------------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || rank1 | int(11) | YES | MUL | NULL | || rank2 | int(11) | YES | MUL | NULL | || log_time | datetime | YES | MUL | NULL | || prefix_uid | varchar(100) | YES | | NULL | || desc1 | text | YES | | NULL | || rank3 | int(11) | YES | MUL | NULL | |+------------+--------------+------+-----+---------+----------------+7 rows in set (000 sec)表记录数:
mysql> select count() from t1;+----------+| count() |+----------+| 32768 |+----------+1 row in set (001 sec)这里我们两条经典的SQL:
SQL C:
select from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;SQL D:
select from t1 where rank1 =100 and rank2 =100 and rank3 =100;表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。
那我们来看SQL C的查询计划。
显然,没有用到任何索引,扫描的行数为32034,cost为324365。
mysql> explain format=json select from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "324365" }, "table": { "table_name": "t1", "access_type": "ALL", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "rows_examined_per_scan": 32034, "rows_produced_per_join": 115, "filtered": "036", "cost_info": { "read_cost": "323207", "eval_cost": "1158", "prefix_cost": "324365", "data_read_per_join": "49K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))" } }}1 row in set, 1 warning (000 sec)我们加上hint给相同的查询,再次看看查询计划。
这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为44109,明显比之前的快了好几倍。
mysql> explain format=json select /+ index_merge(t1) / from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "44109" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "union(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1103, "rows_produced_per_join": 1103, "filtered": "10000", "cost_info": { "read_cost": "33079", "eval_cost": "11030", "prefix_cost": "44109", "data_read_per_join": "473K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))" } }}1 row in set, 1 warning (000 sec)我们再看下SQL D的计划:
不加HINT,
mysql> explain format=json select from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "53434" }, "table": { "table_name": "t1", "access_type": "ref", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "idx_rank1", "used_key_parts": [ "rank1" ], "key_length": "5", "ref": [ "const" ], "rows_examined_per_scan": 555, "rows_produced_per_join": 0, "filtered": "007", "cost_info": { "read_cost": "47884", "eval_cost": "004", "prefix_cost": "53434", "data_read_per_join": "176" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100))" } }}1 row in set, 1 warning (000 sec)加了HINT,
mysql> explain format=json select /+ index_merge(t1)/ from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "523" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "intersect(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "10000", "cost_info": { "read_cost": "513", "eval_cost": "010", "prefix_cost": "523", "data_read_per_join": "440" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100) and (`ytt``t1``rank1` = 100))" } }}1 row in set, 1 warning (000 sec)对比下以上两个,加了HINT的比不加HINT的cost小了100倍。
总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。
首先要确定你的目标,所谓千万级是每秒千万次查询还是千万条记录的数据库,前者是一个极其复杂的,这个不是光告mysql能解决的,我想不是前者,而后者却是很简单的一件事,前提是定义高效,定义两个指标:
1,每秒查询的次数是多少
2,每次查询时长
确定好以后再考虑以下几个因素的优化
1,存储的类型,SSD比普通磁盘的随机读写能力可以提高不少,一般2到3个数量级,还要看索引和数据块的大小,比较复杂
2,先择RAID类型,如果选raid0和raid10可以提升近似1倍的速度
3,使用高带宽的网速,可以减少网络传输延迟,用10g的光纤比1g的电缆理论上可以提升1个数量级的吞吐量,尤其对大数据据量的结果集特别有效
4,合理的索引,带条件的检索字段加上索引
5,用大宽表,尽可能减少多表关联查询,用空间换时间吧
6,_用主从的集群,基本上查询的并发量和服务器的数量成正比的
7,使用缓存,如memcached,尤其对静态数据提升尤其明显
8,合理选择数据库字段的类型,用定长字字,不要用变长的,如定长的int,char,decimal类型,别用varchar,text等
9,给数据库配置更大的内存
10,检查下瓶颈在不在CPU,如果查询复杂,换个更高配置的服务器
总的原刚就是,尽可能用内存替代碰盘提升IO速度,提高网络和CPU的配置以减少查询时间;尽可能提升网络速度,内存和主机的数量以提高并发
我们先探讨非高并发量的实现。
对于查询频次较高的字段,加上索引。
加索引注意事项:
1对那些字符内容较长的最好不要加索引
2按照官方文档,单表加的索引不要超过16个,索引的长度不要超过256个字节。
随意加索引,会给数据维护增加负担
其实,可以引入分区。
分区注意事项:
1常见的分区类型有range,list,hash,key等。用的比较多的就是range分区。
2对于初始建立索引的时候,我们往往会忽视一个前提条件,导致添加失败报错。
这里的前提是,如果表是有主键的,分区的键和主键不是同一个,那么分区的键也必须是主键。
引入分区后,数据写入时,数据库会自动判断写入哪个分区
对于并发量较高的,我们除了做上面的 *** 作外,就要考虑分库分表或者采用一主多从的方式。
未来我相信这类问题需要采用NewSQl这类数据库来解决,如TiDb等,此时,我们将不必考虑数据分区的问题,而且可以做到数据水平无限扩展,和热点数据的动态分布。
数据库的概念:
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,
数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。
数据库的定义:定义1:数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库。
简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等 *** 作。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
定义2:
严格来说,数据库是长期储存在计算机内、有组织的、可共享的数据集合。数据库中的数据指的是以一定的数据模型组织、描述和储存在一起、具有尽可能小的冗余度、较高的数据独立性和易扩展性的特点并可在一定范围内为多个用户共享。
这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改、查由统一软件进行管理和控制。从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。[1] [2]
数据库的处理系统:数据库是一个单位或是一个应用领域的通用数据处理系统,它存储的是属于企业和事业部门、团体和个人的有关数据的集合。数据库中的数据是从全局观点出发建立的,按一定的数据模型进行组织、描述和存储。其结构基于数据间的自然联系,从而可提供一切必要的存取路径,且数据不再针对某一应用,而是面向全组织,具有整体的结构化特征。
数据库中的数据是为众多用户所共享其信息而建立的,已经摆脱了具体程序的限制和制约。不同的用户可以按各自的用法使用数据库中的数据;多个用户可以同时共享数据库中的数据资源,即不同的用户可以同时存取数据库中的同一个数据。数据共享性不仅满足了各用户对信息内容的要求,同时也满足了各用户之间信息通信的要求。
数据库的基本结构:数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。
以内模式为框架所组成的数据库叫做物理数据库;以概念模式为框架所组成的数据叫概念数据库;以外模式为框架所组成的数据库叫用户数据库。
⑴ 物理数据层。
它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令 *** 作处理的位串、字符和字组成。
⑵ 概念数据层。
它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。
⑶ 用户数据层。
它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。
数据库不同层次之间的联系是通过映射进行转换的。
数据库的主要特点:⑴ 实现数据共享
数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。
⑵ 减少数据的冗余度
同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。
⑶ 数据的独立性
数据的独立性包括逻辑独立性(数据库中数据库的逻辑结构和应用程序相互独立)和物理独立性(数据物理结构的变化不影响数据的逻辑结构)。
⑷ 数据实现集中控制
文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。
⑸数据一致性和可维护性,以确保数据的安全性和可靠性
主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用。
⑹ 故障恢复
由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏。数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。比如对系统的误 *** 作造成的数据错误等。
数据库的数据种类:数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。
1数据结构模型
⑴数据结构
所谓数据结构是指数据的组织形式或数据之间的联系。
如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。
例如,设有一个电话号码簿,它记录了n个人的名字和相应的电话号码。为了方便地查找某人的电话号码,将人名和号码按字典顺序排列,并在名字的后面跟随着对应的电话号码。这样,若要查找某人的电话号码(假定他的名字的第一个字母是Y),那么只须查找以Y开头的那些名字就可以了。该例中,数据的集合D就是人名和电话号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。
⑵数据结构类型
数据结构又分为数据的逻辑结构和数据的物理结构。
数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关;数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。
这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。
比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。
2层次、网状和关系数据库系统
⑴层次结构模型
层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。下图是一个高等学校的组织结构图。这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。
按照层次模型建立的数据库系统称为层次模型数据库系统。IMS(Information Management System)是其典型代表。
⑵网状结构模型
按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Database Task Group)。用数学方法可将网状数据结构转化为层次数据结构。
⑶ 关系结构模型
关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。例如某单位的职工关系就是一个二元关系。
由关系数据结构组成的数据库系统被称为关系数据库系统。
在关系数据库中,对数据的 *** 作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。
dBASEⅡ就是这类数据库管理系统的典型代表。对于一个实际的应用问题(如人事管理问题),有时需要多个关系才能实现。用dBASEⅡ建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。dBASEⅡ的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。
因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。
数据库的发展简史:1 数据库的技术发展
使用计算机后,随着数据处理量的增长,产生了数据管理技术。数据管理技术的发展与计算机硬件(主要是外部存储器)系统软件及计算机应用的范围有着密切的联系。数据管理技术的发展经历了以下四个阶段:人工管理阶段、文件系统阶段、数据库阶段和高级数据库技术阶段 。
2 数据管理的诞生
数据库的历史可以追溯到五十年前,那时的数据管理非常简单。通过大量的分类、比较和表格绘制的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上打印出来或者制成新的穿孔卡片。而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。然而,1950 年雷明顿兰德公司(Remington Rand Inc)的一种叫做Univac I 的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。1956 年IBM生产出第一个磁盘驱动器—— the Model 305 RAMAC。此驱动器有50 个盘片,每个盘片直径是2 英尺,可以储存5MB的数据。使用磁盘最大的好处是可以随机存取数据,而穿孔卡片和磁带只能顺序存取数据。
1951: Univac系统使用磁带和穿孔卡片作为数据存储。
数据库系统的萌芽出现于二十世纪60 年代。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要,能够统一管理和共享数据的数据库管理系统(DBMS)应运而生。数据模型是数据库系统的核心和基础,各种DBMS软件都是基于某种数据模型的。所以通常也按照数据模型的特点将传统数据库系统分成网状数据库、层次数据库和关系数据库三类。
最早出现的网状DBMS,是美国通用电气公司Bachman等人在1961年开发的IDS(Integrated Data Store)。1964年通用电气公司(General ElectricCo)的Charles Bachman 成功地开发出世界上第一个网状DBMS也即第一个数据库管理系统——集成数据存储(Integrated Data Store IDS),奠定了网状数据库的基础,并在当时得到了广泛的发行和应用。IDS 具有数据模式和日志的特征,但它只能在GE主机上运行,并且数据库只有一个文件,数据库所有的表必须通过手工编码生成。之后,通用电气公司一个客户——BF Goodrich Chemical 公司最终不得不重写了整个系统,并将重写后的系统命名为集成数据管理系统(IDMS)。
网状数据库模型对于层次和非层次结构的事物都能比较自然的模拟,在关系数据库出现之前网状DBMS要比层次DBMS用得普遍。在数据库发展史上,网状数据库占有重要地位。
层次型DBMS是紧随网络型数据库而出现的,最著名最典型的层次数据库系统是IBM 公司在1968 年开发的IMS(Information Management System),一种适合其主机的层次数据库。这是IBM公司研制的最早的大型数据库系统程序产品。从60年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支持。这个具有30年历史的数据库产品在如今的>
1973年Cullinane公司(也就是后来的Cullinet软件公司),开始出售Goodrich公司的IDMS改进版本,并且逐渐成为当时世界上最大的软件公司。
数据库的关系由来:网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。而后来出现的关系数据库较好地解决了这些问题。
1970年,IBM的研究员EFCodd博士在刊物《Communication of the ACM》上发表了一篇名为“A Relational Model of Data for Large Shared Data Banks”的论文,提出了关系模型的概念,奠定了关系模型的理论基础。尽管之前在1968年Childs已经提出了面向集合的模型,然而这篇论文被普遍认为是数据库系统历史上具有划时代意义的里程碑。Codd的心愿是为数据库建立一个优美的数据模型。后来Codd又陆续发表多篇文章,论述了范式理论和衡量关系系统的12条标准,用数学理论奠定了关系数据库的基础。关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。但是当时也有人认为关系模型是理想化的数据模型,用来实现DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有人视其为当时正在进行中的网状数据库规范化工作的严重威胁。为了促进对问题的理解,1974年ACM牵头组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支持和反对关系数据库两派之间的辩论。这次著名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。
1969年Edgar F“Ted” Codd发明了关系数据库。
1970年关系模型建立之后,IBM公司在San Jose实验室增加了更多的研究人员研究这个项目,这个项目就是著名的System R。其目标是论证一个全功能关系DBMS的可行性。该项目结束于1979年,完成了第一个实现SQL的 DBMS。然而IBM对IMS的承诺阻止了System R的投产,一直到1980年System R才作为一个产品正式推向市场。IBM产品化步伐缓慢的三个原因:IBM重视信誉,重视质量,尽量减少故障;IBM是个大公司,官僚体系庞大,IBM内部已经有层次数据库产品,相关人员不积极,甚至反对。
然而同时,1973年加州大学伯克利分校的Michael Stonebraker和Eugene Wong利用System R已发布的信息开始开发自己的关系数据库系统Ingres。他们开发的Ingres项目最后由Oracle公司、Ingres公司以及硅谷的其他厂商所商品化。后来,System R和Ingres系统双双获得ACM的1988年“软件系统奖”。
1976年霍尼韦尔公司(Honeywell)开发了第一个商用关系数据库系统——Multics Relational Data Store。关系型数据库系统以关系代数为坚实的理论基础,经过几十年的发展和实际应用,技术越来越成熟和完善。其代表产品有Oracle、IBM公司的 DB2、微软公司的MS SQL Server以及Informix、ADABAS D等等。
数据库的发展阶段:数据库发展阶段大致划分为如下的几个阶段:人工管理阶段、文件系统阶段、数据库系统阶段、高级数据库阶段。
人工管理阶段
20世纪50年代中期之前,计算机的软硬件均不完善。硬件存储设备只有磁带、卡片和纸带,软件方面还没有 *** 作系统,当时的计算机主要用于科学计算。这个阶段由于还没有软件系统对数据进行管理,程序员在程序中不仅要规定数据的逻辑结构,还要设计其物理结构,包括存储结构、存取方法、输入输出方式等。当数据的物理组织或存储设备改变时,用户程序就必须重新编制。由于数据的组织面向应用,不同的计算程序之间不能共享数据,使得不同的应用之间存在大量的重复数据,很难维护应用程序之间数据的一致性。
这一阶段的主要特征可归纳为如下几点:
(1)计算机中没有支持数据管理的软件,计算机系统不提供对用户数据的管理功能,应用程序只包含自己要用到的全部数据。用户编制程序,必须全面考虑好相关的数据,包括数据的定义、存储结构以即存取方法等。程序和数据是一个不可分割的整体。数据脱离了程序极具无任何存在的价值,数据无独立性。
(2)数据不能共享。不同的程序均有各自的数据,这些数据对不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一组数据,这些数据也不能共享,程序中仍然需要各自加入这组数据,哪个部分都不能省略。基于这种数据的不可共享性,必然导致程序与程序之间存在大量的重复数据,浪费存储空间。
(3)不能单独保存数据。在程序中要规定数据的逻辑结构和物理结构,数据与程序不独立。基于数据与程序是一个整体,数据只为本程序所使用,数据只有与相应的程序一起保存才有价值,否则毫无用处。所以,所有程序的数据不单独保存。数据处理的方式是批处理。
文件系统阶段:这一阶段的主要标志是计算机中有了专门管理数据库的软件—— *** 作系统(文件管理)。
上世纪50年代中期到60年代中期,由于计算机大容量直接存储设备如硬盘、磁鼓的出现,
推动了软件技术的发展,软件的领域出现了 *** 作系统和高级软件, *** 作系统中的文件系统是专门管理外存的数据管理软件, *** 作系统为用户使用文件提供了友好界面。 *** 作系统的出现标志着数据管理步入一个新的阶段。在文件系统阶段,数据以文件为单位存储在外存,且由 *** 作系统统一管理,文件是 *** 作系统管理的重要资源。
文件系统阶段的数据管理具有一下几个特点:
优点
(1)数据以“文件”形式可长期保存在外部存储器的磁盘上。由于计算机的应用转向信息管理,因此对文件要进行大量的查询、修改和插入等 *** 作。
(2)数据的逻辑结构与物理结构有了区别,程序和数据分离,使数据与程序有了一定的独立性,但比较简单。数据的逻辑结构是指呈现在用户面前的数据结构形式。数据的物理结构是指数据在计算机存储设备上的实际存储结构。程度与数据之间具有“设备独立性”,即程序只需用文件名就可与数据打交道,不必关心数据的物理位置。由 *** 作系统的文件系统提供存取方法(读/写)。
(3)文件组织已多样化。有索引文件、链接文件和直接存取文件等。但文件之间相互独立、缺乏联系。数据之间的联系需要通过程序去构造。
(4)数据不再属于某个特定的程序,可以重复使用,即数据面向应用。但是文件结构的设计仍是基于特定的用途,程序基于特定的物理结构和存取方法,因此程度与数据结构之间的依赖关系并未根本改变。
(5)用户的程序与数据可分别存放在外存储器上,各个应用程序可以共享一组数据,实现了以文件为单位的数据共享文件系统。
(6)对数据的 *** 作以记录为单位。这是由于文件中只存储数据,不存储文件记录的结构描述信息。文件的建立、存取、查询、插入、删除、修改等 *** 作,都要用程序来实现。
(7)数据处理方式有批处理,也有联机实时处理。
缺点
文件系统对计算机数据管理能力的提高虽然起了很大的作用,但随着数据管理规模的扩大,数据量急剧增加,文价系统显露出一些缺陷,问题表现在:
(1)数据文件是为了满足特定业务领域某一部门的专门需要而设计,数据和程序相互依赖,数据缺乏足够的独立性。
(2)数据没有集中管理的机制,其安全性和完整性无法保障,数据维护业务仍然由应用程序来承担;
(3)数据的组织仍然是面向程序,数据与程序的依赖性强,数据的逻辑结构不能方便地修改和扩充,数据逻辑结构的每一点微小改变都会影响到应用程序;而且文件之间的缺乏联系,因而它们不能反映现实世界中事物之间的联系,加上 *** 作系统不负责维护文件之间的联系,信息造成每个应用程序都有相对应的文件。如果文件之间有内容上的联系,那也只能由应用程序去处理,有可能同样的数据在多个文件中重复储存。这两者造成了大量的数据冗余。
(4)对现有数据文件不易扩充,不易移植,难以通过增、删数据项来适应新的应用要求。
数据库系统阶段:20世纪60年代后期,随着计算机在数据管理领域的普遍应用,人们对数据管理技术提出了更高的要求:希望面向企业或部门,以数据为中心组织数据,减少数据的冗余,提供更高的数据共享能力,同时要求程序和数据具有较高的独立性,当数据的逻辑结构改变时,不涉及数据的物理结构,也不影响应用程序,以降低应用程序研制与维护的费用。数据库技术正是在这样一个应用需求的基础上发展起来的。
概括起来,数据库系统阶段的数据管理具有以下几个特点:
(1)采用数据模型表示复杂的数据结构。数据模型不仅描述数据本身的特征,还要描述数据之间的联系,这种联系通过所有存取路径。通过所有存储路径表示自然的数据联系是数据库与传统文件的根本区别。这样,数据不再面向特定的某个或多个应用,而是面对整个应用系统。如面向企业或部门,以数据为中心组织数据,形成综合性的数据库,为各应用共享。
(2)由于面对整个应用系统使得,数据冗余小,易修改、易扩充,实现了数据贡献。不同的应用程序根据处理要求,从数据库中获取需要的数据,这样就减少了数据的重复存储,也便于增加新的数据结构,便于维护数据的一致性。
(3)对数据进行统一管理和控制,提供了数据的安全性、完整性、以及并发控制。
(4)程序和数据有较高的独立性。数据的逻辑结构与物理结构之间的差别可以很大,用户以简单的逻辑结构 *** 作数据而无须考虑数据的物理结构。
(5)具有良好的用户接口,用户可方便地开发和使用数据库。
从文件系统发展到数据库系统,这在信息领域中具有里程碑的意义。在文件系统阶段,人们在信息处理中关注的中心问题是系统功能的设计,因此程序设计占主导地位;而在数据库方式下,数据开始占据了中心位置,数据的结构设计成为信息系统首先关心的问题,而应用程序则以既定的数据结构为基础进行设计。
数据库发展趋势:随着信息管理内容的不断扩展,出现了丰富多样的数据模型(层次模型,网状模型,关系模型,面向对象模型,半结构化模型等),新技术也层出不穷(数据流,Web数据管理,数据挖掘等)。每隔几年,国际上一些资深的数据库专家就会聚集一堂,探讨数据库研究现状,存在的问题和未来需要关注的新技术焦点。过去已有的几个类似报告包括:1989年Future Directions inDBMS Research-The Laguna BeachParticipants ;1990年DatabaseSystems : Achievements and Opportunities ;1991年WH Inmon 发表的《构建数据仓库》;1995年Database。
常见数据库厂商:1 SQL Server
只能在windows上运行,没有丝毫的开放性, *** 作系统的系统的稳定对数据库是十分重要的。Windows9X系列产品是偏重于桌面应用,NT server只适合中小型企业。而且windows平台的可靠性,安全性和伸缩性是非常有限的。它不象unix那样久经考验,尤其是在处理大数据库。
2 Oracle
能在所有主流平台上运行(包括 windows)。完全支持所有的工业标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。
3 Sybase ASE
能在所有主流平台上运行(包括 windows)。 但由于早期Sybase与OS集成度不高,因此VERSION1192以下版本需要较多OS和DB级补丁。在多平台的混合环境中,会有一定问题。
4 DB2
能在所有主流平台上运行(包括windows)。最适于海量数据。DB2在企业级的应用最为广泛,在全球的500家最大的企业中,几乎85%以上用DB2数据库服务器,而国内到97年约占5%。
摘要 本文探讨了基于 IBM DB 的各种数据库备份与恢复策略 并附有完整的实验步骤 本文试图通过具体的实验使读者领会各种数据库备份方式的优劣和异同 并掌握 IBM DB 的数据库备份与恢复技术
若无特殊说明 以下数据库备份与恢复的试验环境均为 Windows XP + IBM DB V 企业版 同样的语句也在 AIX + IBM DB V 上验证通过
一 数据库备份的重要性
在信息日趋发达的时代 数据显得尤其重要 如何保障数据的完整性和安全性呢?如何避免数据灾难事故的发生呢?数据库备份作为数据安全和完整最有利保障手段的重要性就不言而喻了
数据库备份的重要性主要体现在
提高系统的高可用性和灾难可恢复性 (在数据库系统崩溃的时候 没有数据库备份怎么办!?)
使用数据库备份还原数据库是数据库系统崩溃时提供数据恢复最小代价的最优方案 (总不能让客户重新填报数据吧!?)
没有数据就没有一切 数据库备份就是一种防范灾难于未然的强力手段 (没有了数据 应用再花哨也是镜中花水中月)
对于DBA来说 最首要也是最重要的任务就是数据库备份
二 DB 数据库备份的方式与分类
按照数据库备份对数据库的使用影响来划分
A 联机备份(也称热备份或在线备份)
B 脱机备份(也称冷备份或离线备份)
说明 联机备份和脱机备份最大的不同在于 联机备份数据库时 数据库仍然可以供用户使用 而脱机备份数据库则不行 脱机备份数据库时 必须断开所有与数据库有连接的应用后才能进行
按照数据库的数据备份范围来划分
A 完全备份
B 增量备份
说明 完全备份数据库是指备份数据库中的所有数据 而增量备份只是备份数据库中的部分数据 至于增量备份到底备份哪些数据 稍候会提到
增量备份的两种实现方式
A 增量备份(也称累计备份)
B delta备份
说明 这两种备份方式的严格定义如下
增量备份是自最近成功的完全备份以来所有更改的数据的备份
delta 备份则是上一次成功的完全 增量或 delta 备份以后所做更改的数据的备份
这里请读者们仔细的看上面两个增量备份方式的定义 注意这两种备份方式的细微差别 这里我们举一个例子来说明
假设有一个数据库 它每天都有部分数据在发生变化 我们星期一晚上对该数据库做了一次完全备份 星期二晚上对该数据库做了一次增量备份A(注 这里的增量备份是指累计备份 下同) 星期三晚上又做了一次增量备份B 星期四则做了一次delta 备份
那么 我们可以得出以下结论
星期一的数据库备份包含了所有的数据
星期二没有变动过的数据没有发生备份 在星期二变动过的数据会备份 并且备份到增量备份A中
星期三的备份中含有自星期一完全备份以来发生过变动的所有数据 包含了星期二和星期三发生过变动的数据 显然 增量备份A 被 增量备份 B 包含
星期四做的是delta备份 注意 它会也只会备份自星期三备份之后变动过的数据
三 DB 备份文件的结构介绍
在不同的 *** 作系统下 DB 的备份文件的结构是不同的 这里概要地介绍一下
Windows *** 作系统下的数据库备份文件结构
说明 Windows *** 作系统下的数据库备份文件是嵌套在一系列文件夹之下的特殊结构 上例中 D:\DB _Train 是指备份目录 TESTDB 是指数据库名称为 TESTDB DB 是指实例名称 NODE 是指节点名称 CATN 是指编目名称 是指备份发生的年月日 形如YYYYMMDD 是指备份发生的时间 精确到秒 也就是指 点 分 秒 形如HHMMSS 最后的 则是备份文件的一个序列号
Unix *** 作系统下的数据库备份文件结构
说明 Unix *** 作系统下的数据库备份文件就是一个文件 上例中 HTDC 是指数据库名称 db inst 是指实例名称 NODE 是指节点名称 CATN 是指编目名称 是指备份发生的具体时间 形如YYYYMMDDHHMMSS 同样地 它的时间精确到秒 也就是指 年 月 日 点 分 秒发生备份 最后的 则是备份文件的一个序列号
四 DB 数据库备份实验(附完整命令脚本清单)
DB 数据库实验准备工作
( ) Step 创建测试数据库 TestDB
脚本清单 CREATE DATABASE TestDB ON D: USING CODESET GBK TERRITORY CN WITH Pjj s Test DB ; }
( ) Step 创建数据库管理表空间 Data_SP(注意路径 如果没有请创建)
脚本清单 CREATE REGULAR TABLESPACE Data_SP PAGESIZE K MANAGED BY DATABASE USING ( FILE D:\DB \Container\TestDB\UserData\UserData ) BUFFERPOOL IBMDEFAULTBP;
说明 上面的脚本创建了一个名为 Data_SP 的数据库管理表空间 该表空间使用的缓冲池为 IBMDEFAULTBP 存储路径为 D:\DB \Container\TestDB\UserData\ 存储文件名为 UserData 大小为 K = M 页大小为 K
( ) Step 创建测试表 TestTable 并插入测试数据
脚本清单
CREATE TABLE TestTable ( ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH INCREMENT BY NO CACHE ) Message VARCHAR( ) PRIMARY KEY(ID) )IN Data_SP;
插入测试数据 INSERT INTO TestTable(Message) VALUES( 测试表建立成功 );
说明 建立测试表并插入数据是为了稍候验证数据库恢复的时候用的
( ) Step 创建测试表 TestTable 并插入测试数据
脚本清单 CREATE TABLE TestTable ( ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH INCREMENT BY NO CACHE ) Message VARCHAR( ) PRIMARY KEY(ID) )IN Data_SP;
插入测试数据 INSERT INTO TestTable(Message) VALUES( 测试表建立成功 );
DB 数据库脱机备份与恢复实验
脚本清单
Step 完全备份数据库(脱机 备份时间戳记为 )
db backup db TestDB to D:\DB _Train
Step 模拟灾难 强制删除数据库
db drop db TestDB
Step 根据该数据库完全备份还原数据库
db restore db TestDB from D:\DB _Train taken at
DB 数据库增量备份与恢复实验
脚本清单
数据库增量备份以及还原实验
修改数据库参数 TrackMod 使之支持数据库进行增量备份
db update db cfg using TrackMod YES
更改参数后必须完全离线备份数据库(脱机 备份时间戳记为 )
db backup db TestDB to D:\DB _Train
插入测试数据
INSERT INTO TestTable(Message) VALUES( 开始增量数据库备份测试 );
开始增量备份(脱机 备份时间戳记为 )
db backup db TestDB incremental to D:\DB _Train
删除数据库 模拟数据灾难
db drop db TestDB
首先还原至完全离线备份状态
db restore db TestDB from D:\DB _Train taken at
还原至增量离线备份状态
db restore db TestDB incremental automatic from D:\DB _Train taken at
注意 上述语句中 有一个 automatic 它表示无论有多少个增量备份 系统将全自动检索恢复数据库的顺序并自动恢复数据库 如果没有 automatic 则需要多次手动恢复数据库 很麻烦而且容易出错
Step 根据该数据库完全备份还原数据库
db restore db TestDB from D:\DB _Train taken at
还原数据库后查询测试表数据检验数据是否恢复成功
DB 数据库联机机备份与恢复实验
说明 联机备份数据库可以使数据库在备份的同时仍然保持在可用状态 要让数据库支持联机备份 必须更改数据库的日志归档方式 在脱机备份模式下 数据库采用循环日志方式记录数据库日志 在联机备份模式下 数据库则采用归档日志的方式备份数据库日志 另外 对于联机备份的数据库来说 活动日志和归档日志就很重要了 一定要经常备份 保存
脚本清单
数据库联机备份以及还原实验
连接至数据库并插入测试数据
db connect to TestDB
插入测试数据
INSERT INTO TestTable(Message) VALUES( 开始联机数据库备份测试 完全备份 );
修改数据库参数 使之支持在线联机备份
db update db cfg for TestDB using logretain on trackmod on
执行增量 在线备份之前必须执行离线全备份一次 否则数据库将处于备份暂挂的不可用状态
(联机完全备份 时间戳记 )
db backup db TestDB
连接至数据库并插入测试数据
db connect to TestDB
插入测试数据
INSERT INTO TestTable(Message) VALUES( 开始联机数据库备份测试 增量备份 );
执行联机备份 备份同时再打开一个会话 模拟应用在线(联机增量备份 时间戳记 )
db backup db TestDB online incremental to D:\DB _Train
模拟灾难 删除数据库!
重要 此前一定要将活动日志文件备份至另一个路径 保存好 本例中 活动日志保存在 C:\db admin 下
db drop db TestDB
根据在线完全备份恢复数据库
db restore db TestDB from D:\DB _Train taken at
根据在线增量备份恢复数据库
db restore db TestDB incremental automatic from D:\DB _Train taken at
恢复后的数据库处于前滚暂挂的不可用状态
db connect to TestDB
前滚数据库 并指定归档日志位置 重要!
db ROLLFORWARD DATABASE TESTDB TO END OF LOGS AND PLETE OVERFLOW LOG PATH ( C:\db admin )
五 综述
对于数据库管理人员或者维护人员来说 怎么强调数据库备份的重要性都不为过
希望本文能抛砖引玉 能让大家对 IBM DB UDB 的数据库备份与恢复有一些深入的认识 也希望大家能在本机上按照本文的脚本认真的做一次实验 这样 你的认识会更加深刻
lishixinzhi/Article/program/Oracle/201311/18590
1程序设计思想就是如何用程序语言描述世界。2数据库设计有5个阶段,每个阶段的任务是不同的。一般,数据库的设计过程大致可分数据库设计为5个步骤:1)需求分析;调查和分析用户的业务活动和数据的使用情况,弄清所用数据的种类、范围、数量以及它们在业务活动中交流的情况,确定用户对数据库系统的使用要求和各种约束条件等,形成用户需求规约。(2)概念设计;对用户要求描述的现实世界(可能是一个工厂、一个商场或者一个学校等),通过对其中住处的分类、聚集和概括,建立抽象的概念数据模型。这个概念模型应反映现实世界各部门的信息结构、信息流动情况、信息间的互相制约关系以及各部门对信息储存、查询和加工的要求等。所建立的模型应避开数据库在计算机上的具体实现细节,用一种抽象的形式表示出来。以扩充的实体—(E-R模型)联系模型方法为例,第一步先明确现实世界各部门所含的各种实体及其属性、实体间的联系以及对信息的制约条件等,从而给出各部门内所用信息的局部描述(在数据库中称为用户的局部视图)。第二步再将前面得到的多个用户的局部视图集成为一个全局视图,即用户要描述的现实世界的概念数据模型。(3)逻辑设计;主要工作是将现实世界的概念数据模型设计成数据库的一种逻辑模式,即适应于某种特定数据库管理系统所支持的逻辑数据模式。与此同时,可能还需为各种数据处理应用领域产生相应的逻辑子模式。这一步设计的结果就是所谓“逻辑数据库”。(4)物理设计;根据特定数据库管理系统所提供的多种存储结构和存取方法等依赖于具体计算机结构的各项物理设计措施,对具体的应用任务选定最合适的物理存储结构(包括文件类型、索引结构和数据的存放次序与位逻辑等)、存取方法和存取路径等。这一步设计的结果就是所谓“物理数据库”。(5)验证设计;在上述设计的基础上,收集数据并具体建立一个数据库,运行一些典型的应用任务来验证数据库设计的正确性和合理性。一般,一个大型数据库的设计过程往往需要经过多次循环反复。当设计的某步发现问题时,可能就需要返回到前面去进行修改。因此,在做上述数据库设计时就应考虑到今后修改设计的可能性和方便性。
以上就是关于网络数据库安全论文范文全部的内容,包括:网络数据库安全论文范文、结合具体案例的关系数据库设计与查询技术研究:对象关系数据库案例、mysql数据库怎么优化,有几方面的优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)