问题一:大数据技术有哪些 非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-Databaseputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP puting)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
问题二:大数据使用的数据库是什么数据库 ORACLE、DB2、SQL SERVER都可以,关键不是选什么数据库,而是数据库如何优化! 需要看你日常如何 *** 作,以查询为主或是以存储为主或2者,还要看你的数据结构,都要因地制宜的去优化!所以不是一句话说的清的!
问题三:什么是大数据和大数据平台 大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。
问题四:常用大型数据库有哪些 FOXBASE
MYSQL
这俩可算不上大型数据库管理系统
PB 是数据库应用程序开发用的ide,根本就不是数据库管理系统
Foxbase是dos时代的产品了,进入windows时代改叫foxpro,属于桌面单机级别的小型数据库系统,mysql是个中轻量级的,但是开源,大量使用于小型网站,真正重量级的是Oracle和DB2,银行之类的关键行业用的多是这两个,微软的MS SQLServer相对DB2和Oracle规模小一些,多见于中小型企业单位使用,Sybase可以说是日薄西山,不行了
问题五:几大数据库的区别 最商业的是ORACLE,做的最专业,然后是微软的SQL server,做的也很好,当然还有DB2等做得也不错,这些都是大型的数据库,,,如果掌握的全面的话,可以保证数据的安全 然后就是些小的数据库access,mysql等,适合于中小企业的数据库100万数据一下的数据如有帮助请采纳,谢!
问题六:全球最大的数据库是什么 应该是Oracle,第一,Oracle为商业界所广泛采用。因为它规范、严谨而且服务到位,且安全性非常高。第二,如果你学习使用Oracle不是商用,也可以免费使用。这就为它的广泛传播奠定了在技术人员中的基础。第三,Linux/Unix系统常常作为服务器,服务器对Oracle的使用简直可以说极其多啊。建议楼梗多学习下这个强大的数据库
问题七:什么是大数据? 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1随机查询动态报表
2掌握指标管理
3随时线上分析处理
4视觉化之企业仪表版
5协助预测规划
导入BI的目的
1促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
>>
问题八:数据库有哪几种? 常用的数据库:oracle、sqlserver、mysql、access、sybase 2、特点。 -oracle: 1数据库安全性很高,很适合做大型数据库。支持多种系统平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2支持客户机/服务器体系结构及混合的体系结构(集中式、分布式、 客户机/服务器)。 -sqlserver: 1真正的客户机/服务器体系结构。 2图形化用户界面,使系统管理和数据库管理更加直观、简单。 3具有很好的伸缩性,可跨越从运行Windows 95/98的膝上型电脑到运行Windows 2000的大型多处理器等多种平台使用。 -mysql: MySQL是一个开放源码的小型关系型数据库管理系统,开发者为瑞典MySQL AB公司,92HeZu网免费赠送MySQL。目前MySQL被广泛地应用在Internet上的中小型网站中。提供由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。 -access Access是一种桌面数据库,只适合数据量少的应用,在处理少量数据和单机访问的数据库时是很好的,效率也很高。 但是它的同时访问客户端不能多于4个。 -
问题九:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的>>
问题十:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从30开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完>>
大数据正在如何改变数据库格局
提及“数据库”,大多数人会想到拥有30多年风光历史的RDBMS。然而,这可能很快就会发生改变。
一大批新的竞争者都在争夺这一块重要市场,他们的方法是多种多样的,却都有一个共同点:极其专注于大数据。推动新的数据迭代衍生品大部分都是基于底层大数据的3V特征:数量,速度和种类。本质上来讲,今天的数据比以往任何时候都要传输更快,体积更大,同时更加多样化。这是一个新的数据世界,换言之,传统的关系数据库管理系统并没有真正为此而设计。“基本上,他们不能扩展到大量,或快速,或不同种类的数据。”一位数据分析、数据科学咨询机构的总裁格雷戈里认为。这就是哈特汉克斯最近发现。截至到2013年左右,营销服务机构使用不同的数据库,包括MicrosoftSQLServer和Oracle真正应用集群(RAC)的组合。“我们注意到,数据随着时间的增长,我们的系统不能足够快速的处理信息”一位科技发展公司的负责人肖恩说到。“如果你不断地购买服务器,你只能继续走到这幺远,我们希望确保自己有向外扩展的平台。”最小化中断是一个重要的目标,Iannuzzi说到,因此“我们不能只是切换到Hadoop。”相反,却选择了拼接机器,基本上把完整的SQL数据库放到目前流行的Hadoop大数据平台之上,并允许现有的应用程序能够与它连接,他认为。哈特汉克斯现在是在执行的初期阶段,但它已经看到了好处,Iannuzzi说,包括提高容错性,高可用性,冗余性,稳定性和“性能全面提升”。一种完美风暴推动了新的数据库技术的出现,IDC公司研究副总裁CarlOlofson说到。首先,“我们正在使用的设备与过去对比,处理大数据集更加快速,灵活性更强”Olofson说。在过去,这样的集合“几乎必须放在旋转磁盘上”,而且数据必须以特定的方式来结构化,他解释说。现在有64位寻址,使得能够设置更大的存储空间以及更快的网络,并能够串联多台计算器充当单个大型数据库。“这些东西在不可用之前开辟了可能性”Olofson说。与此同时,工作负载也发生了变化。10年前的网站主要是静态的,例如,今天我们享受到的网络服务环境和互动式购物体验。反过来,需要新的可扩展性,他说。公司正在利用新的方式来使用数据。虽然传统上我们大部分的精力都放在了对事务处理_销售总额的记录,比如,数据存储在可以用来分析的地方_现在我们做的更多。应用状态管理就是一个例子假设你正在玩一个网络游戏。该技术会记录你与系统的每个会话并连接在一起,以呈现出连续的体验,即使你切换设备或各种移动,不同的服务器都会进行处理,Olofson解释说。数据必须保持连续性,这样企业才可以分析问题,例如“为什么从来没有人穿过水晶厅”。在网络购物方面,为什么对方点击选择颜色后大多数人不会购买某个特殊品牌的鞋子。“以前,我们并没试图解决这些问题,或者我们试图扔进盒子也不太合适”Olofson说。Hadoop是当今新的竞争者中一个重量级的产品。虽然他本身不是一个数据库,它的成长为企业解决大数据扮演关键角色。从本质上讲,Hadoop是一个运行高度并行应用程序的数据中心平台,它有很强的可扩展性。通过允许企业扩展“走出去”的分布方式,而不是通过额外昂贵的服务器“向上”扩展,“它使得我们可以低成本地把一个大的数据集汇总,然后进行分析研究成果”Olofson说。其他新的RDBMS的替代品如NoSQL家族产品,其中包括MongoDB-目前第四大流行数据库管理系统,比照DB引擎和MarkLogic非结构化数据存储服务。“关系型数据库一直是一项伟大的技术持续了30年,但它是建立在不同的时代有不同的技术限制和不同的市场需求,”MarkLogic的执行副总裁乔·产品帕卡说。大数据是不均匀的,他说。许多传统的技术,这仍然是一个基本要求。“想象一下,你的笔记本电脑上唯一的程序是Excel”帕卡说。“设想一下,你要和你的朋友利用网络保持联系_或者你正在写一个合约却不适合放进行和列中。”拼接数据集是特别棘手的“关系型,你把所有这些数据集中在一起前,必须先决定如何去组织所有的列,”他补充说。“我们可以采取任何形式或结构,并立即开始使用它。”NoSQL数据库没有使用关系数据模型,并且它们通常不具有SQL接口。尽管许多的NoSQL存储折中支持速度等其他因素,MarkLogic为企业定身量做,提供更为周全的选择。NoSQL储存市场有相当大的增长,据市场研究媒体,不是每个人都认为这是正确的做法-至少,不是在所有情况下。NoSQL系统“解决了许多问题,他们横向扩展架构,但他们却抛出了SQL,”一位CEO-MonteZweben说。这反过来,又为现有的代码构成问题。SpliceMachine是一家基于Hadoop的实时大数据技术公司,支持SQL事务处理,并针对OLAP和OLAP应用进行实时优化处理。它被称为替代NewSQL的一个例子,另一类预期会在未来几年强劲增长。“我们的理念是保持SQL,但横向扩展架构”Zweben说。“这是新事物,但我们正在努力试图使它让人们不必重写自己的东西。”深度信息科学选择并坚持使用SQL,但需要另一种方法。公司的DeepSQL数据库使用相同的应用程序编程接口(API)和关系模型如MySQL,意味着没有应用变化的需求而使用它。但它以不同的方式处理数据,使用机器学习。DeepSQL可以自动适应使用任何工作负载组合的物理,虚拟或云主机,该公司表示,从而省去了手动优化数据库的需要。该公司的首席战略官ChadJones表示,在业绩大幅增加的同时,也有能力将“规模化”为上千亿的行。一种来自Algebraix数据完全不同的方式,表示已经开发了数据的第一个真正的数学化基础。而计算器硬件需在数学建模前建成,这不是在软件的情况下,Algebraix首席执行官查尔斯银说。“软件,尤其是数据,从未建立在数学的基础上”他说,“软件在很大程度上是语言学的问题。”经过五年的研发,Algebraix创造了所谓的“数据的代数”集合论,“数据的通用语言”Silver说。“大数据肮脏的小秘密是数据仍然放在不与其他数据小仓融合的地方”Silver解释说。“我们已经证明,它都可以用数学方法来表示所有的集成。”配备一个基础的平台,Algebraix现在为企业提供业务分析作为一种服务。改进的性能,容量和速度都符合预期的承诺。时间会告诉我们哪些新的竞争者取得成功,哪些没有,但在此期间,长期的领导者如Oracle不会完全停滞不前。“软件是一个非常时尚行业”安德鲁·门德尔松,甲骨文执行副总裁数据库服务器技术说。“事情经常去从流行到不受欢迎,回再次到流行。”今天的许多创业公司“带回炒冷饭少许抛光或旋转就可以了”他说。“这是一个新一代孩子走出学校和重塑的东西。”SQL是“唯一的语言,可以让业务分析师提出问题并得到答案,他们没有程序员,”门德尔松说。“大市场将始终是关系型。”至于新的数据类型,关系型数据库产品早在上世纪90年代发展为支持非结构化数据,他说。在2013年,甲骨文的同名数据库版本12C增加了支持JSON(JavaScript对象符号)。与其说需要一个不同类型的数据库,它更是一种商业模式的转变,门德尔松说。“云,若是每个人都去,这将破坏这些小家伙”他说。“大家都在云上了,所以在这里有没有地方来放这些小家伙?“他们会去亚马逊的云与亚马逊竞争?”他补充说。“这将是困难的。”甲骨文有“最广泛的云服务”门德尔松说。“在现在的位置,我们感觉良好。”Gartner公司的研究主任里克·格林沃尔德,倾向于采取了类似的观点。“对比传统强大的RDBMS,新的替代品并非功能齐全”格林沃尔德说。“一些使用案例可以与新的竞争者来解决,但不是全部,并非一种技术”。展望未来,格林沃尔德预计,传统的RDBMS供货商感到价格压力越来越大,并为他们的产品增加新的功能。“有些人会自由地带来新的竞争者进入管理自己的整个数据生态系统”他说。至于新的产品,有几个会生存下来,他预测“许多人将被收购或资金耗尽”。今天的新技术并不代表传统的RDBMS的结束,“正在迅速发展自己”IDC的Olofson。赞成这种说法,“RDBMS是需要明确定义的数据_总是会有这样一个角色。”但也会有一些新的竞争者的角色,他说,特别是物联网技术和新兴技术如非易失性内存芯片模块(NVDIMM)占据上风。数据库里面有三种类型的文件。
第一种文件为主文件,后缀名为mdf,数据库中的主要数据都存储在这个文件中,还有一个文件是日志文件,后缀名为ldf,主要记录数据库的日志以及数据库的 *** 作记录。
一个数据库中必须有至少一个主文件和日志文件。但是主文件只能有一个,日志问及可以有多个。还有一种文件就是辅助文件,后缀名是ldf。主要存储数据库的一些辅助信息。
数据库文件的区别:
数据库只保存文字符,而我们平时使用的WORD文档保存内容更为一般电脑用户查阅使用,并且数据库的资料只在电脑软件开发才频繁使用,一般用户不需打开。 数据库的内容也是非常重要的,所以最好不要随意删改。
文件系统中的文件是支持系统文件运行的,数据库里的文件只是支持数据库运行的文件对于数据库文件 的文件存放结构 是规律性的簇 并且一些专业的数据库系统会对数据库文件预留连续空间以提高索引速度(甲骨文) 。
所在的位置不同而已,对他们来说都是关键的文件当然不一样了,数据库里面的用作做网站用的,而前者的系统是在正常运行的时侯要调用的系统文件
扩展资料:
数据库和一般文件的区别:
数据库是长期存储在计算机内、有组织的、可共享的大量数据的集合。数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可以供各种用户共享。
更重要的是,数据库由数据管理系统自动管理,例如在多个用户同时使用数据库时进行并发控制,在发生故障后对系统进行恢复等。这些功能自己编程很费劲,同时自己写的程序可靠性比较低。
浅谈数据挖掘与数据仓库
1数据挖掘
11数据挖掘与传统数据分析的区别
数据挖掘与传统的数据分析,如查询、报表、联机应用分析的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越出乎意料就可能越有价值。而传统的数据分析趋势为从大型数据库抓取所需数据并使用专属计算机分析软件。因此数据挖掘与传统分析方法有很大的不同。
12数据挖掘的应用价值
(1)分类:首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。(2)估计:与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类是确定数目的,估计是不确定的。(3)聚类:是对记录分组。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。中国移动采用先进的数据挖掘工具马克威分析系统,对用户wap上网的行为进行聚类分析,通过客户分群,进行精确营销。(4)关联规则和序列模式的发现:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。与关联不同,序列是一种纵向的联系。例如:今天银行调整利率,明天股市的变化。(5)预测:通过分类或估值得出模型,该模型用于对未知变量的预言。(6)偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。除此之外,在客户分析,运筹和企业资源的优化,异常检测,企业分析模型的管理的方面都有广泛使用价值。
2数据仓库
21数据仓库的特征
(1)面向主题(Subject Oriented)的数据集合。数据仓库围绕一些主题如顾客、供应商、产品和销售来组织。数据仓库关注决策者的数据建模与分析,而不是组织机构的日常 *** 作和事务处理。(2)集成(Integrated)的数据集合。数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。(3)时变(Time Variant)的数据集合。数据存储从历史的角度提供信息。数据仓库中的数据通常包含历史信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。(4)非易失(Nonvolatile)的数据集合。数据仓库的数据主要供企业决策分析之用,所涉及的数据 *** 作主要是数据查询,修改和删除 *** 作很少,通常只需要定期的加载、刷新。数据仓库里的数据通常只需要两种 *** 作:初始化载入和数据访问,因此其数据相对稳定,极少或根本不更新。[page] 22数据仓库的类型
数据仓库的类型根据数据仓库所管理的数据类型和它们所解决的企业问题范围,一般可将数据仓库分为下列3种类型:企业数据仓库(EDW)、 *** 作型数据库(ODS)和数据集市(Data Marts)。①企业数据仓库为通用数据仓库,它既含有大量详细的数据,也含有大量累赘的或聚集的数据,这些数据具有不易改变性和面向历史性。此种数据仓库被用来进行涵盖多种企业领域上的战略或战术上的决策。② *** 作型数据库既可以被用来针对工作数据做决策支持,又可用做将数据加载到数据仓库时的过渡区域。与EDW相比,ODS是面向主题和面向综合的,易变的,仅含有目前的、详细的数据,不含有累计的、历史性的数据。③数据集市是为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据。几组数据集市可以组成一个EDW。
23数据仓库与传统数据库的比较
二者的联系既有联系又有区别。数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。二者的区别可以从以下几个方面进行比较:
(1)出发点不同:数据库是面向事务的设计;数据仓库是面向主题设计的。(2)存储的数据不同:数据库一般存储在线交易数据;数据仓库存储的一般是历史数据。(3)设计规则不同:数据库设计是尽量避免冗余,一般采用符合范式的规则来设计;数据仓库在设计是有意引入冗余,采用反范式的方式来设计。(4)提供的功能不同:数据库是为捕获数据而设计,数据仓库是为分析数据而设计。(5)基本元素不同:数据库的基本元素是事实表,数据仓库的基本元素是维度表。(6)容量不同:数据库在基本容量上要比数据仓库小的多。(7)服务对象不同:数据库是为了高效的事务处理而设计的,服务对象为企业业务处理方面的工作人员;数据仓库是为了分析数据进行决策而设计的,服务对象为企业高层决策人员。
3数据仓库与数据挖掘的关系
当然为了数据挖掘你也不必非得建立一个数据仓库,数据仓库不是必需的。建立一个巨大的数据仓库,把各个不同源的数据统一在一起,解决所有的数据冲突问题,然后把所有的数据导到一个数据仓库内,是一项巨大的工程,可能要用几年的时间花上百万的钱才能完成。只是为了数据挖掘,你可以把一个或几个事务数据库导到一个只读的数据库中,就把它当作数据集市,然后在他上面进行数据挖掘。
1 随机变量的分布函数
2 连续型随机变量及其概率密度
3 重要的连续型随机变量分布
1 随机变量的分布函数
「背景」:对于非离散型的随机变量,其取值不能一一列举出来,因此就不能像离散型随机变量那样使用分布律描述它。非离散型随机变量有很多种,其中「连续型随机变量」极其常见,因此我们重点研究连续型随机变量。对于连续性随机变量,在某个点的概率为,另外,实际中,对于元件的寿命,测量的误差等,研究其落在某个区间的概率更有意义,因此我们引出了随机变量的分布函数
「定义」:设是一个随机变量, 是任意实数,函数
则为的「分布函数」。
❝
虽然对于离散型随机变量,我们可以使用分布律来全面地描述它,但为了从数学上能够统一地对随机变量进行研究,因此,我们针对离散型随机变量和非离散型随机变量统一地定义了分布函数。
❞
「性质」
是一个不减函数
❝
对于任意实数 ,有 成立
❞
,
,
, 即 是右连续的
用分布函数表示事件概率
❝
这里的表示 分布函数 在处理左极限。同理,表示 分布函数 在处理右极限 。
细心的同学也许注意到背景部分提到连续型随机变量在某一个点的概率为0,这里还整 和 搞这么麻烦是为了啥?原因是这部分内容,对连续型和离散型随机变量都成立,离散型随机变量在某一个点有具体的不为0的概率值,因此不能忽略!
❞
2 连续型随机变量及其概率密度
定义,如果随机变量的分布函数,存在非负函数,使对于任意实数有
则称 为「连续型随机变量」 ,其中函数称为的「概率密度函数」,简称「概率密度」
概率密度具有以下性质:
对于任意实数 ,
若在处连续,则有
连续型随机变量,任取一个指定实数的概率为,即
证明如下:
❝
根据分布函数定义,有 ,我们知道 表示 在处理左极限,即 , 由于 在定义域内连续,所以有
❞
相关推论:
这里虽然 , 但随机变量是可以取到 点的, 也就是说 对于事件,如果其发生的概率, 不一定是 不可能事件, 但是如果已经知道 是不可能事件,则必有
连续型随机变量,计算区间概率时,区间端点可有可无,即
由第二条可知,我们假设 , 会发现虽然, 但是却不能取到 点,所以得出结论:对于事件,如果其发生的概率,则不一定是必然事件,但是如果已经知道 是必然事件,则必有
3 重要的连续型随机变量分布
31 均匀分布
若连续型随机变量具有概率密度
则称在区间 上服从「均匀分布」,记作
❝
必要性证明
❞
分布函数
性质
落在子区间内的概率,只跟子区间长度有关,跟子区间位置无关,证明很简单,不再赘述
应用
在公交站台的等车时间,针落在坐标纸上的倾斜角等
32 指数分布
若连续型随机变量具有概率密度
其中为常数,则称服从参数为的「指数分布」,记作
❝
必要性证明
❞
分布函数
性质
「无记忆性」,如果是某一元件的寿命,那么已知原件已经使用了小时,它总共能用至少 小时的条件概率,与从开始使用时算起它至少能用 小时的概率相等,数学表达式为
❝
证明如下
❞
应用
服务系统的服务时间,通话时间,某消耗品的寿命等
33 正态分布
若连续型随机变量具有概率密度
其中为常数,则称服从参数为的「正态分布」或「高斯(Gauss)分布」,记作
❝
必要性证明
很明显, 下面证明
令 ,则
我们先求 的积分,很难直接求出其积分,我们需要用到一个技巧,令
❞
分布函数
性质
正态分布曲线关于 对称
当 时取得最大值,
其他特性,可参考下图理解:
❝
曲线在 处有拐点
曲线以轴为渐近线
离越远,的值就越小,这表明对于同样长度的区间,当区间离越远,落在这个区间的概率就越小
如果固定,改变的值,则图形沿着轴平移,而不改变其形状。被称作位置参数(参考下图**和蓝色的线)
如果固定,改变的值,由于其最大值 随着变小,而变得越尖,因而落在附近的概率变大 (参考下图红色和**的线)
❞
当 时称随机变量服从「标准正态分布」,其概率密度和分布函数分别用和表示,则有
由性质很容易推知:
❝
证明如下:
的分布函数为
❞
❝
第二种证明方法, 令 则
❞
由该引理可知
❝
我们看到,正态分布的值落在内几乎时肯定的事情,这就是「 法则」
❞
设,若 满足条件
,
则称点为标准正态分布的「上 分位点」
应用
在自然现象和社会现象中,大量随机变量都服从或者近似服从正态分布。例如,一个地区的男性成年人身高,测量某零件长度的误差,海洋波浪的高度,半导体器件中的热噪声电流或电压等。后续我们还会介绍正态分布的其他重要特性
数据库
文章转载自Python爬虫和数据挖掘,如果涉嫌侵权,请发送邮件至:contact@modbpro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。
分享你的看法,一起交流吧~
相关阅读
2022年11月国产数据库大事记
达梦数据库 | 记一次国产化数据库安装适配分析过程
我国数据库现状与未来发展趋势
DTCC2022 | openGauss打造企业级开源数据库,服务行业核心系统
中国信通院公布第十五批“可信数据库”评估评测结果
20221220 终版,内置AutoParaAdj30_20221220版本达梦数据库一键安装脚本,支持单机,datawatch(一主八备),dsc(任意多节点)
@数据库er,openGauss Summit 2022 喊您来参会啦!
三大数据库 sequence 之华山论剑
OceanBase 官方的客户端导数工具
2022信创产业领军企业100强发布,海量数据、万里数据库、巨杉数据库等5家数据库厂商入选择
数据库的应用领域
1、多媒体数据库: 这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。
2、移动数据库: 该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。
3、空间数据库: 这类数据库目前发展比较迅速。它主要包括地理信息数据库(又称为地理信息系统,即GIS)和计算机辅助设计(CAD)数据库。其中地理信息数据库一般存储与地图相关的信息数据;计算机辅助设计数据库一般存储设计信息的空间数据库,如机械、集成电路以及电子设备设计图等。
4、信息检索系统: 信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。
5、分布式信息检索: 这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。
许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。
6、专家决策系统: 专家决策系统也是数据库应用的一部分。由于越来越多的数据可以联机获取,特别是企业通过这些数据可以对企业的发展作出更好的决策,以使企业更好地运行。由于人工智能的发展,使得专家决策系统的应用更加广泛。
扩展资料
对数据库系统的基本要求是:
①能够保证数据的独立性。数据和程序相互独立有利于加快软件开发速度,节省开发费用。
②冗余数据少,数据共享程度高。
③系统的用户接口简单,用户容易掌握,使用方便。
④能够确保系统运行可靠,出现故障时能迅速排除;能够保护数据不受非受权者访问或破坏;能够防止错误数据的产生,一旦产生也能及时发现。
⑤有重新组织数据的能力,能改变数据的存储结构或数据存储位置,以适应用户 *** 作特性的变化,改善由于频繁插入、删除 *** 作造成的数据组织零乱和时空性能变坏的状况。
⑥具有可修改性和可扩充性。
⑦能够充分描述数据间的内在联系。
可以设置每次增长多少的,不一定是连续的,但一定要有规律。
bigint
-2^63 (-9,223,372,036,854,775,808) 到dao 2^63-1 (9,223,372,036,854,775,807)
8 字节
int-2^31 (-2,147,483,648) 到 2^31-1 (2,147,483,647)
4 字节
smallint-2^15 (-32,768) 到 2^15-1 (32,767)
2 字节
tinyint0 到 255
扩展资料:
当访问DataTable对象时,请注意它们是按条件区分大小写的。例如,如果一个DataTable被命名为“mydatatable”,另一个被命名为“Mydatatable”,则用于搜索其中一个表的字符串被认为是区分大小写的。但是,如果“mydatatable”存在而“Mydatatable”不存在,则认为该搜索字符串不区分大小写。
一个DataSet可以包含数个DataTable对象,它们具有相同的TableName属性值和不同的Namespace属性值。有关使用DataTable对象的更多信息。
参考资料来源:百度百科-数据表
mysql更快。
1、直接读文件相比数据库查询效率更胜一筹,而且文中还没算上连接和断开的时间。
2、一次读取的内容越大,直接读文件的优势会越明显(读文件时间都是小幅增长,这跟文件存储的连续性和簇大小等有关系),这个结果恰恰跟书生预料的相反,说明MYSQL对更大文件读取可能又附加了某些 *** 作(两次时间增长了近30%),如果只是单纯的赋值转换应该是差异偏小才对。
3、写文件和INSERT几乎不用测试就可以推测出,数据库效率只会更差。
4、很小的配置文件如果不需要使用到数据库特性,更加适合放到独立文件里存取,无需单独创建数据表或记录,很大的文件比如、音乐等采用文件存储更为方便,只把路径或缩略图等索引信息放到数据库里更合理一些。
5、PHP上如果只是读文件,file_get_contents比fopen、fclose更有效率,不包括判断存在这个函数时间会少3秒左右。
6、fetch_row和fetch_object应该是从fetch_array转换而来的,书生没看过PHP的源码,单从执行上就可以说明fetch_array效率更高,这跟网上的说法似乎相反。
实 际上在做这个试验之前,从个人经验判断就有了大概的结果,测试完成后则有种豁然开朗的感觉。假定在程序效率和关键过程相当且不计入缓存等措施的条件下,读 写任何类型的数据都没有直接 *** 作文件来的快,不论MSYQL过程如何,最后都要到磁盘上去读这个“文件”(记录存储区等效),所以当然这一切的前提是只读 内容,无关任何排序或查找 *** 作。
MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。
MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言。MySQL 软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择 MySQL 作为网站数据库。
以上就是关于大数据数据库有哪些全部的内容,包括:大数据数据库有哪些、大数据正在如何改变数据库格局、数据库文件有几种类型,有何区别呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)