hadoop是数据库技术吗

hadoop是数据库技术吗,第1张

Hadoop不是数据库技术。Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

hadoop计算需要在hdfs文件系统上进行,文件上传到hdfs上通常有三种方法:a hadoop自带的dfs服务,put;b hadoop的API,Writer对象可以实现这一功能;c 调用OTL可执行程序,数据从数据库直接进入hadoop

hadoop计算需要在hdfs文件系统上进行,因此每次计算之前必须把需要用到的文件(我们称为原始文件)都上传到hdfs上。文件上传到hdfs上通常有三种方法:

a hadoop自带的dfs服务,put;

b hadoop的API,Writer对象可以实现这一功能;

c 调用OTL可执行程序,数据从数据库直接进入hadoop

由于存在ETL层,因此第三种方案不予考虑

将a、b方案进行对比,如下:

1 空间:方案a在hdfs上占用空间同本地,因此假设只上传日志文件,则保存一个月日志文件将消耗掉约10T空间,如果加上这期间的各种维表、事实表,将占用大约25T空间

方案b经测试,压缩比大约为3~4:1,因此假设hdfs空间为100T,原来只能保存约4个月的数据,现在可以保存约1年

2 上传时间:方案a的上传时间经测试,200G数据上传约1小时

方案b的上传时间,程序不做任何优化,大约是以上的4~6倍,但存在一定程度提升速度的余地

3 运算时间:经过对200G数据,大约4亿条记录的测试,如果程序以IO *** 作为主,则压缩数据的计算可以提高大约50%的速度,但如果程序以内存 *** 作为主,则只能提高5%~10%的速度

4 其它:未压缩的数据还有一个好处是可以直接在hdfs上查看原始数据。压缩数据想看原始数据只能用程序把它导到本地,或者利用本地备份数据

压缩格式:按照hadoop api的介绍,压缩格式分两种:BLOCK和RECORD,其中RECORD是只对value进行压缩,一般采用BLOCK进行压缩。

对压缩文件进行计算,需要用SequenceFileInputFormat类来读入压缩文件,以下是计算程序的典型配置代码:

JobConf conf = new JobConf(getConf(), logclass);

confsetJobName(”log”);

confsetOutputKeyClass(Textclass);//set the map output key type

confsetOutputValueClass(Textclass);//set the map output value type

confsetMapperClass(MapClassclass);

//confsetCombinerClass(Reduceclass);//set the combiner class ,if havenot, use Recuce class for default

confsetReducerClass(Reduceclass);

confsetInputFormat(SequenceFileInputFormatclass);//necessary if use compress

接下来的处理与非压缩格式的处理一样

hadoop一般是应用于冷数据处理,对于实时数据,如果非要使用,可以变着方法使用。

方法一:在hadoop上使用hbase数据库,以为hbase是不走Map/Reduce的,所以 *** 作在毫秒级。

方法二:将业务数据用程序分成实时数据和冷数据,实时数据存于关系数据库,冷数据存到hadoop。比如:将最近一个月的数据存到关系数据库,用做实时响应业务处理。将一个月以前的数据存到hadoop,用作历史数据查询以及统计分析,数据挖掘等。

hadoop的hdfs支持海量数据量存储 mapreduce支持对海量数据的分布式处理\x0d\oracle虽然可以搭建集群 但是当数据量达到一定限度之后查询处理速度会变得很慢 且对机器性能要求很高\x0d\其实这两个东西不是同类 hadoop是一个分布式云处理架构,倾向于数据计算 而oracle是一个关系型数据库,倾向于数据存储。要说比较可以比较hbase与oracle。\x0d\hbase是一种nosql数据库,列式数据库,支持海量数据存储,支持列的扩展,但是查询 *** 作较复杂,不如oracle这类关系型数据库简单,且只支持一个索引,但是Hbase在表结构设置合理情况下,查询速度跟数据量大小没有太大关系,即数据量的大小不会影响到查询速度,顺便说句Hbase查询速度可以达到ms级

框架本身提供一个DBInputFormat。支持MySql和PostgreSQL(需要自己提供驱动jar包)。

需要使用其他数据库可以自己实现相应的InputFormat;实现起来也不难参照DBInputFormat即可。只要将拼接的sql语句改成适用的语法即可。

以上就是关于hadoop是数据库技术吗全部的内容,包括:hadoop是数据库技术吗、如何实现让用户在网页中上传下载文件到HDFS中、hadoop可以用mysql作为数据库吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9507524.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存