目录
- NoSQL数据库的进一步分类
- OLTP市场规模:关系型数据库仍占营收大头
- 数据库市场份额:云服务和新兴厂商主导NoSQL
- 开源数据库 vs 商业数据库
- 数据库三大阵营:传统厂商和云服务提供商
最近由于时间原因我写东西少了,在公众号上也转载过几篇搞数据库朋友的大作。按说我算是外行,没资格在这个领域品头论足,而当我看到下面这份报告时立即产生了学习的兴趣,同时也想就能看懂的部分写点心得体会分享给大家。
可能本文比较适合普及性阅读,让数据库领域资深的朋友见笑了:)
数据库分类维度:关系型/非关系型、交易型/分析型
首先是分类维度,上图中的纵轴分类为Relational Database(关系型数据库,RDBMS)和Nonrelational Database (非关系型数据库,NoSQL),横轴的分类为Operational(交易型,即OLTP)和Analytical(分析型,即OLAP)。
按照习惯我们先看关系型数据库,左上角的交易型类别中包括大家熟悉的商业数据库Oracle、MS SQL Server、DB2、Infomix,也包括开源领域流行的MySQL(MariaDB是它的一个分支)、PostgreSQL,还有云上面比较常见的SQL Azure和Amazon Aurora等。
比较有意思的是,SAP HANA正好位于交易型和分析型的中间分界处,不要忘了SAP还收购了Sybase,尽管后者今天不够风光了,而早年微软的SQL Server都是来源于Sybase。Sybase的ASE数据库和分析型Sybase IQ还是存在的。
右上角的分析型产品中包括几款知名的列式数据仓库Pivotal Greenplum、Teradata和IBM Netezza(已宣布停止支持),来自互联网巨头的Google Big Query和Amazon RedShift。至于Oracle Exadata一体机,它上面运行的也是Oracle数据库,其最初设计用途是OLAP,而在后来发展中也可以良好兼顾OLTP,算是一个跨界产品吧。
再来看非关系型数据库,左下角的交易型产品中,有几个我看着熟悉的MongoDB、Redis、Amazon DynamoDB和DocumentDB等;右下角的分析型产品包括著名的Hadoop分支Cloudera、Hortonworks(这2家已并购),Bigtable(来自Google,Hadoop中的HBase是它的开源实现)、Elasticsearch等。
显然非关系型数据库的分类要更加复杂,产品在应用中的差异化也比传统关系型数据库更大。Willian Blair很负责任地对它们给出了进一步的分类。
NoSQL数据库的进一步分类
上面这个图表应该说很清晰了。非关系型数据库可以分为Document-based Store(基于文档的存储)、Key-Value Store(键值存储)、Graph-based(图数据库)、Time Series(时序数据库),以及Wide Cloumn-based Store(宽列式存储)。
我们再来看下每个细分类别中的产品:
文档存储 :MongoDB、Amazon DocumentDB、Azure Cosmos DB等
Key-Value存储 :Redis Labs、Oracle Berkeley DB、Amazon DynamoDB、Aerospike等
图数据库 :Neo4j等
时序数据库 :InfluxDB等
WideCloumn :DataStax、Cassandra、Apache HBase和Bigtable等
多模型数据库 :支持上面不只一种类别特性的NoSQL,比如MongoDB、Redis Labs、Amazon DynamoDB和Azure Cosmos DB等。
OLTP市场规模:关系型数据库仍占营收大头
上面这个基于IDC数据的交易型数据库市场份额共有3个分类,其中深蓝色部分的关系型数据库(RDBMS,在这里不统计数据挖掘/分析型数据库)占据80%以上的市场。
Dynamic Database(DDMS,动态数据库管理系统,同样不统计Hadoop)就是我们前面聊的非关系型数据库。这部分市场显得小(但发展势头看好),我觉得与互联网等大公司多采用开源+自研,而不买商业产品有关。
而遵循IDC的统计分类,在上图灰色部分的“非关系型数据库市场”其实另有定义,参见下面这段文字:
数据库市场份额:云服务和新兴厂商主导NoSQL
请注意,这里的关系型数据库统计又包含了分析型产品。Oracle营收份额42%仍居第一,随后排名依次为微软、IBM、SAP和Teradata。
代表非关系型数据库的DDMS分类中(这里同样加入Hadoop等),云服务和新兴厂商成为了主导,微软应该是因为云SQL Server的基础而小幅领先于AWS,这2家一共占据超过50%的市场,接下来的排名是Google、Cloudera和Hortonworks(二者加起来13%)。
上面是IDC传统分类中的“非关系型数据库”,在这里IBM和CA等应该主要是针对大型机的产品,InterSystems有一款在国内医疗HIS系统中应用的Caché数据库(以前也是运行在Power小机上比较多)。我就知道这些,余下的就不瞎写了。
开源数据库 vs 商业数据库
按照流行度来看,开源数据库从2013年到现在一直呈现增长,已经快要追上商业数据库了。
商业产品在关系型数据库的占比仍然高达605%,而上表中从这列往左的分类都是开源占优:
Wide Cloumn:开源占比818%;
时序数据库:开源占比807%;
文档存储:开源占比800%;
Key-Value存储:开源占比722%;
图数据库:开源占比684%;
搜索引擎:开源占比653%
按照开源License的授权模式,上面这个三角形越往下管的越宽松。比如MySQL属于GPL,在互联网行业用户较多;而PostgreSQL属于BSD授权,国内有不少数据库公司的产品就是基于Postgre哦。
数据库三大阵营:传统厂商和云服务提供商
前面在讨论市场份额时,我提到过交易型数据库的4个巨头仍然是Oracle、微软、IBM和SAP,在这里William Blair将他们归为第一阵营。
随着云平台的不断兴起,AWS、Azure和GCP(Google Cloud Platform)组成了另一个阵营,在国外分析师的眼里还没有BAT,就像有的朋友所说,国内互联网巨头更多是自身业务导向的,在本土发展公有云还有些优势,短时间内将技术输出到国外的难度应该还比较大。(当然我并不认为国内缺优秀的DBA和研发人才)
第三个阵容就是规模小一些,但比较专注的数据库玩家。
接下来我再带大家简单过一下这前两个阵容,看看具体的数据库产品都有哪些。
甲骨文的产品,我相对熟悉一些的有Oracle Database、MySQL以及Exadata一体机。
IBM DB2也是一个庞大的家族,除了传统针对小型机、x86(好像用的人不多)、z/OS大型机和for i的版本之外,如今也有了针对云和数据挖掘的产品。记得抱枕大师对Informix的技术比较推崇,可惜这个产品发展似乎不太理想。
微软除了看家的SQL Server之外,在Azure云上还能提供MySQL、PostgreSQL和MariaDB开源数据库。应该说他们是传统软件License+PaaS服务两条腿走路的。
如今人们一提起SAP的数据库就想起HANA,之前从Sybase收购来的ASE(Adaptive Server Enterprise)和IQ似乎没有之前发展好了。
在云服务提供商数据库的3巨头中,微软有SQL Server的先天优势,甚至把它移植到了Linux拥抱开源平台。关系型数据库的创新方面值得一提的是Amazon Aurora和Google Spanner(也有非关系型特性),至于它们具体好在哪里我就不装内行了:)
非关系型数据库则是Amazon全面开花,这与其云计算业务发展早并且占据优势有关。Google当年的三篇经典论文对业界影响深远,Yahoo基于此开源的Hadoop有一段时间几乎是大数据的代名词。HBase和Hive如今已不再是人们讨论的热点,而Bigtable和BigQuery似乎仍然以服务Google自身业务为主,毕竟GCP的规模比AWS要小多了。
最后这张DB-Engines的排行榜,相信许多朋友都不陌生,今年3月已经不是最新的数据,在这里列出只是给大家一个参考。该排行榜几乎在每次更新时,都会有国内数据库专家撰写点评。
以上是我周末的学习笔记,班门弄斧,希望对大家有帮助。
参考资料《Database Software Market:The Long-Awaited Shake-up》
>
结论:单机版性能已经足够支撑个人和小公司的业务了
我在实际使用中,010以上的单机版可以满足需要了,这个TSM的引擎实力很强了
我司一月的数据量是1400个点3000万秒=四千亿个点
存储查询的速度也很好,而且还是按一段时间7000秒左右进行存取的,存大概15秒,取几秒
压缩性特别棒,存储文件小得可爱
我估计了下,存下我司一年的业务也才500G硬盘
综上,也就用不着上集群了
所以,集群功能真心是更大的业务才用得着了,这个收费的话,这种大业务对应的大公司,妥妥地付得起。
另外:时间序列数据库的翘楚,PI,按百万起,石油电力用得飞起,性能更是强到变态。广告中写每秒1 万点数据存储一年,仅需要4G 的空间。一分钱一分货啊。可惜我司买不起。
目前市场上主要常用的数据库根据数据库应用类型的不同有时候区别。在关系数据库中,Oracle、MySQL/MariaDB、SQL Server、PostgrcSQL、 DB2等数据库应用较广泛。在时序数据库类型中,InfluxDB、RRDtool、Graphite等数据库也较为常见。其他类型数据库可参考 >
对于个人使用而言,选择哪种数据库主要取决于你的需求和使用场景。以下是一些常用的数据库及其特点:
MySQL:开源免费,适合小型项目和网站,易于使用,具有广泛的社区支持和资源。
PostgreSQL:开源免费,适合大型项目和企业应用,功能强大,支持高级特性,例如完整的事务处理和高级查询语言。
SQLite:轻量级的嵌入式数据库,不需要独立的服务器,适合小型应用和移动设备应用。
Microsoft SQL Server:商业数据库,适合在Windows环境下使用,具有强大的功能和高性能。
Oracle:商业数据库,适合大型企业应用,功能非常强大,但价格昂贵。
在选择数据库时,可以考虑以下因素:
数据库的类型和功能是否满足你的需求。
数据库的性能是否满足你的要求。
数据库的可靠性和安全性是否得到保障。
数据库的易用性和可维护性如何。
数据库的成本是否合理。
综合考虑以上因素,你可以选择适合自己使用的数据库。
这要看是什么数据库,比如My SQL数据库,可以用navicat for mysql、phpMyAdmin、MySQLDumper之类的软件实现可视化 *** 作。
以上就是关于一份难得的数据库市场分析报告全部的内容,包括:一份难得的数据库市场分析报告、一直很热闹的数据库领域,有哪些事情让你感觉眼前一亮、如何看待influxdb集群功能不再开源等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)