如果打算为项目选择一款免费、开源的数据库,那么你可能会在MySQL与PostgreSQL之间犹豫不定。MySQL与PostgreSQL都是免
费、开源、强大、且功能丰富的数据库。你主要的问题可能是:哪一个才是最好的开源数据库,MySQL还是PostgreSQL呢?该选择哪一个开源数据库
呢?
在选择数据库时,你所做的是个长期的决策,因为后面如果再改变决定将是非常困难且代价高昂的。你希望一开始就选择正确。两个流行
的开源数据库MySQL与PostgreSQL常常成为最后要选择的产品。对这两个开源数据库的高层次概览将会有助于你选择最适合自己需要的。
MySQL
MySQL相对来说比较年轻,首度出现在1994年。它声称自己是最流行的开源数据库。MySQL就是LAMP(用于Web开发的软件包,包括
Linux、Apache及Perl/PHP/Python)中的M。构建在LAMP栈之上的大多数应用都会使用MySQL,包括那些知名的应用,如
WordPress、Drupal、Zend及phpBB等。
一开始,MySQL的设计目标是成为一个快速的Web服务器后端,使用
快速的索引序列访问方法(ISAM),不支持ACID。经过早期快速的发展之后,MySQL开始支持更多的存储引擎,并通过InnoDB引擎实现了
ACID。MySQL还支持其他存储引擎,提供了临时表的功能(使用MEMORY存储引擎),通过MyISAM引擎实现了高速读的数据库,此外还有其他的
核心存储引擎与第三方引擎。
MySQL的文档非常丰富,有很多质量不错的免费参考手册、图书与在线文档,还有来自于Oracle和第三方厂商的培训与支持。
MySQL近几年经历了所有权的变更和一些颇具戏剧性的事件。它最初是由MySQL
AB开发的,然后在2008年以10亿美金的价格卖给了Sun公司,Sun公司又在2010年被Oracle收购。Oracle支持MySQL的多个版
本:Standard、Enterprise、Classic、Cluster、Embedded与Community。其中有一些是免费下载的,另外一
些则是收费的。其核心代码基于GPL许可,对于那些不想使用GPL许可的开发者与厂商来说还有商业许可可供使用。
现在,基于最初的
MySQL代码还有更多的数据库可供选择,因为几个核心的MySQL开发者已经发布了MySQL分支。最初的MySQL创建者之一Michael
"Monty"
Widenius貌似后悔将MySQL卖给了Sun公司,于是又开发了他自己的MySQL分支MariaDB,它是免费的,基于GPL许可。知名的
MySQL开发者BrianAker所创建的分支Drizzle对其进行了大量的改写,特别针对多CPU、云、网络应用与高并发进行了优化。
PostgreSQL
PostgreSQL标榜自己是世界上最先进的开源数据库。PostgreSQL的一些粉丝说它能与Oracle相媲美,而且没有那么昂贵的价格和傲慢的客服。它拥有很长的历史,最初是1985年在加利福尼亚大学伯克利分校开发的,作为Ingres数据库的后继。
PostgreSQL是完全由社区驱动的开源项目,由全世界超过1000名贡献者所维护。它提供了单个完整功能的版本,而不像MySQL那样提供了多个
不同的社区版、商业版与企业版。PostgreSQL基于自由的BSD/MIT许可,组织可以使用、复制、修改和重新分发代码,只需要提供一个版权声明即
可。
可靠性是PostgreSQL的最高优先级。它以坚如磐石的品质和良好的工程化而闻名,支持高事务、任务关键型应用。
PostgreSQL的文档非常精良,提供了大量免费的在线手册,还针对旧版本提供了归档的参考手册。PostgreSQL的社区支持是非常棒的,还有来
自于独立厂商的商业支持。
数据一致性与完整性也是PostgreSQL的高优先级特性。PostgreSQL是完全支持ACID特性
的,它对于数据库访问提供了强大的安全性保证,充分利用了企业安全工具,如Kerberos与OpenSSL等。你可以定义自己的检查,根据自己的业务规
则确保数据质量。在众多的管理特性中,point-in-time
recovery(PITR)是非常棒的特性,这是个灵活的高可用特性,提供了诸如针对失败恢复创建热备份以及快照与恢复的能力。但这并不是
PostgreSQL的全部,项目还提供了几个方法来管理PostgreSQL以实现高可用、负载均衡与复制等,这样你就可以使用适合自己特定需求的功能
了。
考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面昌平IT培训将整理出一份包含十款工具的清单,从而有效压缩选择范畴。
OpenRefine
这是一款高人气数据分析工具,适用于各类与分析相关的任务。这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。在聚类完成后,分析即可开始。
Hadoop
大数据与Hadoop可谓密不可分。这套软件库兼框架能够利用简单的编程模型将大规模数据集分发于计算机集群当中。其尤为擅长处理大规模数据并使其可用于本地设备当中。作为Hadoop的开发方,Apache亦在不断强化这款工具以提升其实际效果。
Storm
同样来自Apache的Storm是另一款伟大的实时计算系统,能够极大强化无限数据流的处理效果。其亦可用于执行多种其它与大数据相关的任务,具体包括分布式RPC、持续处理、在线机器学习以及实时分析等等。使用Storm的另一大优势在于,其整合了大量其它技术,从而进一步降低大数据处理的复杂性。
Plotly
这是一款数据可视化工具,可兼容JaScript、MATLAB、Python以及R等语言。Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。
Rapidminer
作为另一款大数据处理必要工具,Rapidminer属于一套开源数据科学平台,且通过可视化编程机制发挥作用。其功能包括对模型进行修改、分析与创建,且能够快速将结果整合至业务流程当中。Rapidminer目前备受瞩目,且已经成为众多知名数据科学家心目中的可靠工具。
Cassandra
ApacheCassandra是另一款值得关注的工具,因为其能够有效且高效地对大规模数据加以管理。它属于一套可扩展NoSQL数据库,能够监控多座数据中心内的数据并已经在Netflix及eBay等知名企业当中效力。
HadoopMapReduce
这是一套软件框架,允许用户利用其编写出以可靠方式并发处理大规模数据的应用。MapReduce应用主要负责完成两项任务,即映射与规约,并由此提供多种数据处理结果。这款工具最初由谷歌公司开发完成。
Bokeh
这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供Python语言使用。
WolframAlpha
这是一套搜索引擎,旨在帮助用户搜索其需要的计算素材或者其它内容。举例来说,如果大家输入“Facebook”,即可获得与Facebook相关的HTML元素结构、输入解释、Web托管信息、网络统计、子域、Alexa预估以及网页信息等大量内容。
以上就是关于四大开源数据库是哪些全部的内容,包括:四大开源数据库是哪些、昌平IT培训分享开源大数据分析工具、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)