gis中明确定义空间结构关系的数学方法:
指在GIS(地理信息系统)里实现分析空间数据,即从空间数据中获取有关地理对象的空间位置、分布、形态、形成和演变等信息并进行分析。
根据作用的数据性质不同,可以分为:
1、基于空间图形数据的分析运算;
2、基于非空间属性的数据运算;
3、空间和非空间数据的联合运算。空间分析赖以进行的基础是地理空间数据库,其运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段,最终的目的是解决人们所涉及到地理空间的实际问题,提取和传输地理空间信息,特别是隐含信息,以辅助决策。
扩展资料
空间分析源于60年代地理学的计量革命,在开始阶段,主要是应用定量(主要是统计)分析手段用于分析点、线、面的空间分布模式。后来更多的是强调地理空间本身的特征、空间决策过程和复杂空间系统的时空演化过程分析。
实际上自有地图以来,人们就始终在自觉或不自觉地进行着各种类型的空间分析。如在地图上量测地理要素之间的距离、方位、面积,乃至利用地图进行战术研究和战略决策等,都是人们利用地图进行空间分析的实例,而后者实质上已属较高层次上的空间分析。
算术运算符中的加(+),用于获取两个或两个以上数据的和,可以两个数相加或多个数据相加,如下图所示:
算术运算符的减(+),是用于一个数据减去另外一个数据,或者一个数据减去多个数据,如下图所示:
算术运算符的乘(),是用于一个数据乘以另外一个数据或多个数据,获取乘的结果,如下图所示:
算术运算符的除(/),是一个数除以另外一个数据或多个,获取返回的商,如下图所示:
另外,算术运算符还有一种取模运算,就是一个数除以另外一个数获取余数,如下图所示:
6
算术运算符中除和取模运算,都是一个数除以另一个数,这时如果被除数为0,这时就会出现问题,返回结果为null,如下图所示:
设关系R除以关系S的结果为关系T,则T包含所有在R但不在S中的属性及其值,且T的元组与S的元组的所有组合都在R中。除运算的含义–给定关系R (X,Y) 和S (Y,Z),其中X,Y,Z为属性组。R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影:元组在X上分量值x的象集Yx包含S在Y上投影的集合。
当我们计算R除以T时:(不区分大小写)
1先找出R表中和T表相同的属性,这里是B和C。
2也就是说R表中的其他属性A可以取值为{a,b,c}
3其中, a的象集为{(b,c),(d,e)},b的象集为{(b,c),(d,e)},c的象集为{(a,b)}
4而T在B和C上的投影为S{(b,c),(d,e)},这时候,我们在步骤三中找一个象集是包含S集合的,即a,b的象集包含了T在B,C
属性组上的投影,所以R÷T={a,b}。
可以用公式SUMIF
根据指定条件对若干单元格求和。
语法
SUMIF(range,criteria,sum_range)
Range 为用于条件判断的单元格区域。
Criteria 为确定哪些单元格将被相加求和的条件,其形式可以为数字、表达式或文本。例如,条件可以表示为 32、"32"、">32"、"apples"。
Sum_range 为需要求和的实际单元格。只有当 Range 中的相应单元格满足条件时,才对 sum_range 中的单元格求和。如果省略 sum_range。则直接对 Range 中的单元格求和。
说明
Microsoft Excel 还提供了其他一些函数,它们可根据条件来分析数据。例如,如果要计算单元格区域内某个文本字符串或数字出现的次数,则可使用 COUNTIF 函数。如果要让公式根据某一条件返回两个数值中的某一值(例如,根据指定销售额返回销售红利),则可使用 IF 工作表函数。请查阅 关于根据条件计算值。
示例
假设 A1:A4 的内容分别为下列分属于四套房子的属性值:$100,000,$200,000,$300,000,$400,000。B1:B4 的内容为下列与每个属性值相对应的销售佣金;$7,000,$14,000,$21,000,$28,000。
SUMIF(A1:A4,">160,000",B1:B4) 等于 $63,000
一、P值计算方法
左侧检验P值是当时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
右侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
双侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
二、P值的意义
P 值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 005 为显著, P <001 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于005 或001。
扩展资料:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际 *** 作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
参考资料:
数据分析怎么写
数据分析怎么写?众所周知,数据分析报告是根据数据分析原理以及方法,运用数据来反映以及分析事情的现状、原因、本质,得出结论和解决办法,我相信很多人在想到数据分析报告的时候是都十分痛苦的,不知从何下手,下面为大家分享数据分析怎么写。
数据分析怎么写1需求分析
一定要了解一定要了解清楚要什么再开始动手。如果只知道出发,不知道方向、目的,那么有可能会越走越远离方向。就好像做菜,比如你爱人想吃鱼,你也没继续问,就给她做了一道红烧鲤鱼。但是事实上你可能都没了解清楚,她是像是具体那种鱼,是想要红烧清蒸还是其他做法。可能你做了很多的工作,付出了辛勤的劳动,但最后她仍然不满意。做数据分析也是如此,如果没有了解清楚需求,有可能最后会造成全盘的返工。
最好需要了解报告的用途、形式、重点目标和完成时限。即使你拿到了草稿或者样本也要自己了解一遍比较好。主要原因是因为,现在如果是你做,那你就是负责人。你应该最清楚如果让报告满足所有需求。另外,之前的报告不一定就考虑到了所有的细节,如果做之前没有考虑,那么最后还有可能会一步一步增加细节,也会耽误时间。
前进一定要有方向,做数据分析一定要有需求分析!
数据采集
数据的数量和质量对于数据分析师和食材的数量及质量对于厨师的意义是一样的。如果没有数据,那就像空有一身厨艺却没有任何食材的厨师。所以,做好需求分析之后的下一步一定是数据采集。
数据采集就是收集相关原始数据的过程,为数据报告提供了最基本的素材来源。在现实中来源有多种多样,直接问业务发生者或者一线管理者、公司运营后台的数据、网站运营时的数据等等。数据采集工作要做的就是尽可能地收集可能能用得上的数据,并集中地保存到合适的文档里,用于后期的处理。
数据采集的数量一定要足够多,否则难以发现有价值的数据规律;此外收集的过程中也要主要收集准确的资料,虚假的数据无法生成可信且可行的数据报告。这要求在数据收集的过程中不仅应该有科学而严谨的方法,而且对异常数据也要具备一定的甄别能力。
数据处理
厨师在进行烹饪之前,一般会对食材进行一定的处理,方便后续烹制。食材经过处理才能被用来加工,同样的,数据也只有被经过处理之后才能拿来制作数据报告。
采集到的数据要继续进行加工整理才能形成合力的规范样式,用于后续的数据分析运算,因此数据处理是整个过程中一个必不可少的中间步骤,也是数据分析的前提和基础。数据经过加工处理,可以提高可读性,更方便运算;反之,如果跳过这个环节,不仅会影响到后期的运算分析效率,更有可能造成错误的分析结果。
举一个常见的例子,如果是从业务发生者或者是一线管理者收集来的数据很有可能格式不统一,如果不做处理,很难开展下一步的工作。
数据分析
食材都处理好了,后续还要掌握火候,按照食谱的顺序来加工 *** 作。数据分析也一样,前期方案和数据都准备好了,按照既定的方法就可以实现预定的目标。
通过专门的统计分析工具以及数据挖掘技术,可以对这些数据进行分析和研究,从中发现数据的内在关系和规律,获取有价值有意义的信息。
数据展现
菜做好了,也得装盘才行。如果是客人未尝试过的,有份介绍可能更好。菜肴的色相意味形以及为专人订制的价值就是展示的主要目标。
同样,数据分析的结果最终要行程结论,这个结论要通过数据分析报告的形式展现给决策者。数据分析报告的结论要简洁鲜明,一目了然,同时还要有足够的论据支持,这些论据就包括分析的数据以及分析的方法。
因此,在最终的数据报告中,表格和图形是两种常见的数据展现方式。通常情况下,一图胜十表,一表胜十言。所以,在数据展现上,我们一定要做到可视化。图表具有直观而形象的特点,可以化冗长为简洁,化抽象为具体,使数据和数据关系得到最直接有效地表达。如果你想要表现一个营业部经营状况的趋势性结论,使用一串枯燥的数字或者一串文字,远不如一个折线图加趋势线更能说明问题。
经过上面这几个步骤的 *** 作,一份完整的数据报告就可以形成,其中的价值将会在决策和实践中起到作用。
寻找真因
数据分析经过上述步骤看起来基本完成,但是真正的来说,数据分析一定要和实际业务相结合,要为决策者决策服务。下面这几个步骤是重点为决策者服务。
数据分析怎么写2分析类别:
首先需要知道自己报告的类别,如你需要做 昨天的交易分析,那就是描述性分析。你需要找到订单量下降的原因,就是解释性分析。你需要对下个月的销售做提前采购计划,就是预测性分析。针对一个未知的事情,比如你们产品是否需要增加某个功能模块,做探索研究,就是探索性分析。
分析流程:
数据分析一般都是一次性的,一般都是专题分析报告。提需求的方式,是我们有一个问题需要解决(解释性,探索性,描述性,预测性)。而不是提的需求是,我需要一个什么样格式的数据,你们计算好了发给我一下,甚至直接给我做一个ppt和报表。客户说 自己想买一瓶可乐,其实他只是口渴,我们只需要给他点喝的就行。
分析报告类型:
数据分析报告是数据分析过程和思路的最后呈现,得出分析的结论并给出解决方案。其本质上是在写一篇有理有据,逻辑性强的议论文。针对不同的分析目的选择不同的报告形式和内容。
报告结构:
一份数据分析报告由以下几个部分组成,一般都是总分总的格式:
标题:
标题是一份报告的文眼,是全篇报告最浓缩的精华。好的标题让读者能毫无偏差地理解这篇分析报告的主要目的,有时可以直接在标题中加入部分或者关键性结论达到直达文意的效果。
在标题的命名过程中,现在有一份关于数据分析师招聘和薪酬方面的一份报告,你可以:
1 直接在标题中放上报告的结论,例如《数据分析师在人工智能大环境下需求直线上升》
2 提出分析报告的研究问题,例如《数据分析师的职业规划在哪里》
3 中规中矩地写上研究的主题,例如《数据分析师的招聘研究》
目录:
提现数据分析报告的整体架构
前言
前言部分就和写论文时候的Abstract类似:
1、 要写出做这次分析报告的目的和背景
2、略微阐述现状或者存在的问题
3、通过这次分析需要解决什么问题
4、运用了什么分析思路,分析方法和模型
5、给出总结性的结论或者效果
以上就是关于gis中明确定义空间结构关系的数学方法全部的内容,包括:gis中明确定义空间结构关系的数学方法、如何合理使用MySQL数据库算术运算符求值、数据库除运算怎么理解等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)