SQL数据库优化的方法有哪些

SQL数据库优化的方法有哪些,第1张

在进行软件开发过程中,数据的使用是非常重要的,但是数据库有很多种,不同数据库的使用方法是不同的。进行软件开发过程中,至少需要掌握一种数据库的使用方法。SQL数据库语法简单、 *** 作方便和高效,是很多人最优的选择,但是SQL语句会受到不同数据库功能的影响,在计算时间和语言的效率上面需要进行优化,根据实际情况进行调整。下面电脑培训为大家介绍SQL数据库的优化方法。

一、适当的索引

索引基本上是一种数据结构,有助于加速整个数据检索过程。唯一索引是创建不重叠的数据列的索引。正确的索引可以更快地访问数据库,但是索引太多或没有索引会导致错误的结果。IT培训认为如果没有索引,处理速度会变得非常慢。

二、仅索引相关数据

指定需要检索数据的精度。使用命令和LIMIT代替SELECT。调整数据库时,必须使用所需的数据集而不是整个数据集,尤其是当数据源非常大时,指定所需的数据集,能够节省大部分时间。

三、根据需求使用或避免临时表

如果代码可以用简单的方式编写,那么永远不要使临时表变得复杂。当然,如果数据具有需要多个查询的特定程序,北大青鸟建议在这种情况下,使用临时表。临时表通常由子查询交替。

四、避免编码循环

避免编码循环是非常重要的,因为它会减慢整个序列的速度。通过使用具有单行的唯一UPDATE或INSERT命令来避免编码循环,并且昆明北大青鸟发现WHERE命令能够确保存储的数据不被更新,这样能够方便在找到匹配和预先存在的数据时被找到。

调整数据结构的设计。调整应用程序结构设计。

数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。

它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2…”、“阴、雨、下降、气温”、“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。

在计算机科学中,数据是所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数,例如:运行在UNIX *** 作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

扩展资料

数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等 *** 作。

数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

参考资料:

数据库的百度百科

数据库优化可以从以下几个方面进行:

1结构层: web服务器采用负载均衡服务器,mysql服务器采用主从复制,读写分离

2储存层: 采用合适的存储引擎,采用三范式

3设计层: 采用分区分表,索引,表的字段采用合适的字段属性,适当的采用逆范式,开启mysql缓存

4sql语句层:结果一样的情况下,采用效率高,速度快节省资源的sql语句执行

oracle count 百万级 分页查询记录总数、总条数优化

Oracle count 百万级 查询记录总数、总条数优化

最近做一个项目时,做分页时,发现分页查询速度很慢,分页我做的是两次查询,一次是查询总数,一次是查询分页结果

[java] view plain copy

/ 查询总记录数 /

SELECT

COUNT(id)

FROM

USER

order by

id

/ 查询结果集 /

select

from

( select

row_,

rownum rownum_

from

( select

id ,

user_number,

user_name,

user_password,

sex,

Registered_time,

last_login_time,

post

from

USER u

order by

uid) row_

where

rownum <=

)

where

rownum_ >

user表中的记录是128万多条,这个是没有查询条件时的查询,也就是用户刚刚进入模块时的查询,发现查询时间是2566ms~2152ms之间,单独执行每条语句,发现第一条的执行时间在2000ms以上,在PL/SQL中执行的结果也证实了我的判断。所以要对select count语句进行优化。

在网上找了很多优化方案,大多不尽人意,(分表的方式听上去不错,不过由于单表是历史原因,这里就不作考虑)。最后找到一个比较令人满意的答。就是在语句中加入 /+ROWID(USER)/或者/+ INDEX(USER ID) / 来提高查询效果。

听说这个就是强制使用索引统计结果?如果有哪位大虾能把原理详细告诉我,请来多多指点!

[java] view plain copy

SELECT /+ROWID(USER)/ count() FROM USER t

或者

SELECT /+ INDEX(USER ID) / count() FROM USER t

使用后,单条统计总数的查询在800ms左右,分页查询结果基本在900ms~950ms之间,基本在一秒之内,达到了当初设计需求。

当然,这个是没有加查询条件的,当把查询条件加入后,不管前面加不加强制索引,结果时间都在2000ms之间,所以,如果要进行有条件的查询,就要在where条件中进行优化。特别注意条件字段查询前后顺序。

我们都知道,服务器数据库的开发一般都是通过java或者是PHP语言来编程实现的,而为了提高我们数据库的运行速度和效率,数据库优化也成为了我们每日的工作重点,今天,北京IT培训就一起来了解一下mysql服务器数据库的优化方法。

为什么要了解索引

真实案例

案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。

案例二:近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。

索引的优点

合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。

索引的类型

mysql数据中有多种索引类型,primarykey,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。

BTREE是常见的优化要面对的索引结构,都是基于BTREE的讨论。

B-TREE

查询数据简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。

现代数据库的索引文件和文件系统的文件块都被组织成BTREE。

btree的每个节点都包含有key,data和只想子节点指针。

btree有度的概念d>=1。假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。树的大高度为h=Logb[(N+1)/2]。

索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。这样磁盘I/O的次数,就等于树的高度h。假设b=100,一百万个节点的树,h将只有3层。即,只有3次磁盘I/O就可以查找完毕,性能非常高。

索引查询

建立索引后,合适的查询语句才能大发挥索引的优势。

另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配合适的索引。

body{

line-height:200%;

}

如何优化MySQL数据库

当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。

我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、myf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。

1服务器物理硬件的优化

1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询 *** 作,对磁盘的读写量可想而知,所以推荐使用RAID10磁盘阵列,如果资金允许,可以选择固态硬盘做RAID10;

2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。

2MySQL应该采用编译安装的方式

MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。

3MySQL配置文件的优化

1)skip

-name

-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;

2)back_log

=

384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。

3)如果key_reads太大,则应该把myf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。

4MySQL上线后根据status状态进行适当优化

1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。

2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections

100%

=85%

5MySQL数据库的可扩展架构方案

1)MySQL

cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;

2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。

以上就是关于SQL数据库优化的方法有哪些全部的内容,包括:SQL数据库优化的方法有哪些、有哪些常见的数据库优化方法、数据库中查询优化的目的是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9530965.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存