序数据库英文全称为Time Series Database,简称TSDB,是以时间为索引的规律性时间间隔记录的数据库。时序数据库采用特殊数据存储方式,极大提高了时间相关数据的处理能力,相对于关系型数据库它的存储空间减半,查询速度极大的提高。
一、时序数据库是什么
时序数据库全称为时间序列数据库。时间序列数据库指主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据,带时间标签的数据也称为时间序列数据。
时间序列数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生的数据,这些工业数据的典型特点是:产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。

二、时序数据库的特点
1、有效处理庞大数据。
2、对重复的部分,Informix TimeSeries只保持一份数据。
3、节省空间50%,有效降低I/O。
4、主键索引更有效。
5、时间序列表头分离的特性不浪费空间。
三、时序数据库和关系型数据库的区别
1、数据压缩情况
关系型数据库将它们的数据按行存储在磁盘上,不同的数据类型彼此相邻,这限制了可以使用什么类型的压缩算法以及可以压缩多少数据。
而时序数据库通常以相同类型的数据点彼此相邻的方式存储数据,这样的话可以使用最佳压缩算法,大大节省了存储成本。
2、数据库架构
关系型数据库底层是定义好模式的,所以对于表本身,不管是修改还是删除某一列,都会影响到数据库的模式,在底层相当于要进行”数据库迁移“。
而时序数据库往往是无模式的,允许快速轻松地添加新字段。
3、可用性和冗余
关系型数据库可以通过集群存储的方式提供高可用性,但它们容易受到网络可用性的影响,如果连接断开,数据收集将停止。
而时序数据库通过收集器的冗余可以确保良好的可用性,时序数据库一般带有存储转发技术,如果发生中断,该技术会在收集器处缓冲数据,当服务器自动重连时,缓冲区最终会同步上传,确保不会丢失数据。
4、数据安全
数据库被黑客和病毒攻击的事件频繁发生,中q的大多数是知名的关系数据库,常见的攻击比如有:SQL注入。
而时序数据库一般不允许通过标准接口插入、更新或删除数据,此外,时序数据库会跟踪所有更改,包括使用访问、配置、安全违规和系统警报。
前言
上篇文章简单介绍canal概念,本文结合常见的缓存业务去讲解canal使用。在实际开发过程中,通常都会把数据往redis缓存中保存一份,做下简单的查询优化。如果这时候数据库数据发生变更 *** 作,就不得不在业务代码中写一段同步更新redis的代码,但是这种 数据同步的代码和业务代码糅合在一起 看起来不是很优雅,而且还会出现数据不一致问题。那能不能把这部分同步代码从中抽离出来,形成独立模块呢?答案是肯定的,下面通过canal结合Kafka来实现mysql与redis之间的数据同步。
架构设计
通过上述结构设计图可以很清晰的知道用到的组件:MySQL、Canal、Kafka、ZooKeeper、Redis。
Kafka&Zookeeper搭建
首先在 官网 下载Kafka:
下载后解压文件夹,可以看到以下几个文件:
Kafka内部自带了zookeeper,所以暂不需要去下载搭建zookeeper集群,本文就使用Kafka自带zookeeper来实现。
通过上述zookeeper启动命令以及Kafka启动命令把服务启动,可以通过以下简单实现下是否成功:
Canal搭建
canal搭建具体可以参考上文,这里只讲解具体的参数配置:
找到/conf目录下的canalproperties配置文件:
然后配置instance,找到/conf/example/instanceproperties配置文件:
经过上述配置后,就可以启动canal了。
测试
环境搭建完成后,就可以编写代码进行测试。
1、引入pom依赖
2、封装Redis工具类
在applicationyml文件增加以下配置:
封装一个 *** 作Redis的工具类:
3、创建MQ消费者进行同步
创建一个CanalBean对象进行接收:
最后就可以创建一个消费者CanalConsumer进行消费:
测试Mysql与Redis同步
mysql对应的表结构如下:
启动项目后,新增一条数据:
可以在控制台看到以下输出:
如果更新呢?试一下Update语句:
同样可以在控制台看到以下输出:
经过测试完全么有问题。
总结
既然canal这么强大,难道就没缺点嘛?答案当然是存在的啦,比如:canal只能同步增量数据、不是实时同步而是准实时同步、MQ顺序问题等; 尽管有一些缺点,毕竟没有一样技术或者产品是完美的,最重要是合适。比如公司目前有个视图服务提供宽表搜索查询功能就是通过 同步Mysql数据到Es采用Canal+Kafka的方式来实现的。
以上就是关于时序数据库和结构化的关系全部的内容,包括:时序数据库和结构化的关系、canal+Kafka实现mysql与redis数据同步、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)