国内量化交易平台的数据库谁最棒?

国内量化交易平台的数据库谁最棒?,第1张

米筐 和 聚宽 支 持股票和金融期货 数据 。 优矿平台 提 供股 票 ,基金 , 衍 生 品 等数据 , 比 较 全 面 , 但 很 多数据 库 都 是 付费 的 , 免 费 数据 就 比较少 了 。当 然 ,米筐 最近 也是 新 增 了 数据库 。 数据质 量 米 筐和 优矿 的 比 较棒 。

一说到量化投资,一下子蹦出来一堆厉害的语汇,例如:FPGA,微波加热,高频率,纳秒等级延迟时间这些。这种全是高频交易中的语汇,高频交易的确是基金管理公司做起来较为适合,平常人搞起来门槛较为高。

可是,必须确立一点量化投资不相当于高频交易。买卖假如依据频率来区划的话,可分成:高频率:ticke纳秒等级的1s等级中低频:1s~2h等级超低频:1d~2w等长线投资高频交易对延迟时间,特性和可靠性规定十分高,必须很多的硬件配置的成本费和人力成本。

可是中低频买卖对硬件配置规定便会低许多。本人与基金管理公司差别关键反映在优化算法上,普通程序也是有工作能力捕捉到这一频率的买卖数据信号。老头子废话不多说,就一个字,立即干!假如要想剖析A股,或是BTC,就必须自身构建一套自然环境。

一般构建一个量化平台必须这种流程:设立账户〉开发工具构建〉数据信息提前准备〉量化交易策略开发设计〉回归测试〉模拟交易〉实盘买卖一、设立账户(这里忽略)

一、开发工具构建现阶段流行的两种服务平台是,python和R语言。这两个语言表达有给予回测架构,时间序列分析剖析,数据分析的库,(C+和java还可以,但是门槛相对性较为高)。

Python:现阶段应该是最广泛的本人量化分析技术性优选 语言表达,由于有关的开源框架非常丰富多彩。R:高级优化算法较为便捷,小区较为活跃性。我选择的是Python,常见的回测架构用的是ZipLine和BackTrader。

二、数据信息提前准备中国的股票数据,有一些服务提供商给予,例如通联数据、tushare;海外证券数据信息能够从得这种数据信息后就可以导到数据库查询去。有关数据库查询的挑选,一般应用Mysql,假如信息量较为大(>100G)能够应用mogodb,一般本人不容易这么大信息量。

三、量化交易策略开发设计说到买卖优化算法,通常会想到深度学习、马尔可夫实体模型、数据分析、深度神经网络、神经元网络等这种厉害的AI语汇,可是,一般游戏玩家基本上用不上。

针对一般投资者能够采用简易高效率的优化算法:

1、将自身实际 *** 作和念头程序化交易,例如:三连阳,买低价股票或是你听闻过什么神奇的实际 *** 作技巧全是用编码完成,随后应用历史记录开展回测。

2.传统式的指标值买卖:移动平均线,MACD,布林线指标等,蜡烛图基础理论,RSI,江恩理论。这种纯技术指标分析指标值必须在特殊的情景才可以有功效,大家都听闻过海龟交易法,很有可能都觉得挺有些道理的。但具体情况怎样,用A股或是外汇数据测试一下,便会发觉长期性回报率并不是特别好。

3.多因子选股票:每一个投资者都是有自身的选股票基础理论,例如有些人会看市净率,股票换手率,市净率,领域状况,交易量。这种挑选要素非常简单,但要是以好几千个股里去挑选,通常必须很多活力。程序流程就能特别好处理这种难题。如果你是高级玩家还可以试着一下高级优化算法。

例如深度学习,数据分析等。互联网大数据在金融投资行业运用或是处在逐渐环节。从现阶段信息内容看来,互联网大数据基金收益率的算是非常好,例如百度搜索和广发证券协作的百发指数型基金,腾讯官方和嘉实协作的互联网大数据股票基金。

四、回归测试假如回测实际效果非常好,回报率,最大回撤率,Sharp值,等指标值,都是在可接纳的范畴内容,你毫无疑问便会激动,急着要上真正买卖,乃至逐渐方案创立私募投资基金,可是,别着急,最好是模拟交易一下。

五、模拟交易但在实盘买卖前,还必须做一两个月模拟交易。许多回测实际效果非常好的对策不一定在模拟交易情况下就主要表现得好。历史记录是固定不动,回测的情况下能够根据持续调节主要参数,让各类指标值趋向极致,有时会造成优化算法过度拟合,由于销售市场一直千姿百态,太过于呆板的优化算法是没法融入销售市场转变。

模拟交易最后实际效果一般在于你的程序流程是不是灵便,是不是优良的风险性和资金分配优化算法。

总结:对于说本人做量化投资是不是可靠,上边的步骤早已表明了实际可策划方案,可靠性显而易见。对于能否赚到钱,就看本人的修为了更好地。

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。

量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。

量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。

量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。

量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。

统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。

用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7 *** 作系统。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9589069.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存