首先,oracle
是一个DBMS
即关系型数据库管理系统,是一个用来使用sql语句 *** 作数据查询存储的工具,按照你的提问我估计你认为的oracle数据库
是指的oracle
遵循关系型数据库理论利用sql引擎查询管理数据的那部分功能。。。。
而你认为的oracle
数据仓库,是oracle数据库的一个功能扩展套件,oracle数据仓库可以支持一些数据处理分析的高级功能,帮助建立企业数据仓库。。。
不过数据仓库并不是靠软件能简单建立的,还要依赖对业务的理解,对数据仓库理论的理解,建立一个符合实际需求的数据仓库
数据库(DataBase,DB)是一个长期存储在计算机内的、有组织的、有共享的、统一管理的数据集合。它是一个按数据结构来存储和管理数据的计算机软件系统。
数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它并不是所谓的“大型数据库”。
数据挖掘(Data Mining)是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。主要是通过分析大量的数据,发现一些事物之间不易为人察觉的规律。可以建立在数据仓库的基础上,不过一个数据仓库的建立会耗费大量的人力、物力、财力和较长的时间,若只为了进行数据挖掘而建立一个数据仓库是不值得的,但若数据仓库本身是建立好的,那在其基础上进行数据挖掘则会省很多事情。
想要学习了解更多数据库、数据仓库、和数据挖掘的信息,推荐CDA数据分析师课程。“CDA 数据分析师认证”是一套科学化,专业化,国际化的人才考核标准,涉及行业包括互联网、金融、咨询、电信、零售、医疗、旅游等,该标准符合当今全球数据科学技术潮流,可以为各行业企业和机构提供数据人才参照标准。点击预约免费试听课。
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。 数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。(维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID) 数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看WHInmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。 “面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。 “与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。 “不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。 数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋 补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。 1效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。 2数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。 3扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了 9回答者: wenchaojian
数据仓库是数据库概念的升级,和数据库相比,数据仓库要比数据库更加庞大;数据仓库主要用于分析数据,数据库主要用于捕获数据;数据仓库主要存储历史数据,数据库存储在线交易数据;数据仓库的基本元素是维度表,数据库的基本元素是事实表。
数据仓库的组成部分包括数据抽取工具、数据库、信息发布系统、数据仓库管理、元数据、数据集市、访问工具。数据仓库的数据建模分为四个阶段,分别是业务建模、领域概念建模、逻辑建模、物理建模。
数据仓库并不能取代数据库,两者是相辅相成的关系,数据仓库主要面向主题设计,数据库主要面向事务的设计。
资料拓展:数据仓库,英文名称为DataWarehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。
简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。 数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。 数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。 单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。 显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。 数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看WHInmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。 “面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。 “与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。 “不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。 数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。 补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。 1效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。 2数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。 3扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了
7理解数据仓库的含义,数据仓库和数据库的区别。
答:含义数据仓库是一个面向主题的,集成的,不可更新的,随时间不断变化的数据集合,他可以支持企业或组织的决策分析处理。
区别:1数据库只存放在当前值,数据仓库存放历史值;
2数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;
3数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;
4数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;
5数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;
6数据库在访问数据时要求响应速度快,其响应时间一般在几秒内,而数据仓库的响应时间则可长达数几小时
以上就是关于oracle 数据仓库 与数据库的区别全部的内容,包括:oracle 数据仓库 与数据库的区别、简述数据库 数据仓库 和数据挖掘三者之间的关系、数据库与数据仓库 有何相似之处等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)