1.数据容量:1-3内概少条数据每条数据概少字节;
2.数据项:否字段些字段值否经更新;
3.数据查询SQL条件:哪些数据项列名称经现WHERE、GROUP BY、ORDER BY句等;
4.数据更新类SQL条件:少列经现UPDATE或DELETE WHERE句;
5.SQL量统计比:SELECT:UPDATE+DELETE:INSERT=少
6.预计表及相关联SQL每总执行量何数量级
7.表数据:更新主业务 查询主业务
8.打算采用数据库物理服务器及数据库服务器架构
9.并发何
10.存储引擎选择InnoDBMyISAM
致明白10问题至于何设计类表应该都清楚
至于优化若指创建表能变表结构建议InnoDB引擎利用点内存减轻磁盘IO负载IO往往数据库服务器瓶颈
另外优化索引结构解决性能问题建议优先考虑修改类SQL语句使更快些已靠索引组织结构式前提 索引已经创建非若读主考虑打query_cache 及调整些参数值:sort_buffer_size,read_buffer_size,read_rnd_buffer_size,join_buffer_siz
更信息参见:
MySQL数据库服务器端核参数详解推荐配置
纸谈兵说我思路及我解决抛砖引玉
我近解决问题
我现公司三张表5亿数据每张表每增量100w
每张表概10columns左右
面我做测试比
1.首先看engine,数据量情况没做区情况
mysiam比innodb读情况效率要高13%左右
2.做partition读mysql官文档其实于partition专门myisam做优化于innodb所数据存ibdata面所即使看schema变其实没本质变化
区于同physical disk面情况提升概1%
区同physical disk我三同disks提升概3%其实所谓吞吐量由素决定比explain parition候看record区每区都其实本质没解决读问题提升写效率
另外问题于区张表三column都经用于做查询条件其实件悲惨事情没办所sql做针性区mysql官文档说间做区且用间查询恭喜
3.表主要用读写其实问题充应该问写入候同并发查询我问题比较简单mongodb shredding支持能crushmysql所通情况9am-9pm写入情况候我做 viewview基于近插入或者经查询通做view离读取说写table读进行逻辑判断前view *** 作
4做些archive table比先些表做已统计析通已析+增量解决
5用mysiam问题要注意.configure候加max index length参数候record数于制定度候indexdisable
这种情况我以前也碰见过,一般的数据库都搞不定,几千万的数据,在进行比较并更新插入数据,得很大的临时表空间和数据库日志文件,我是用load搞定的,创建一个临时表,用load cursor做,
第一优化你的sql和索引;第二加缓存,memcached,redis;
第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;
第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,另外分区表还有一些坑,在这里就不多说了;
第五如果以上都做了,那就先做垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;
第六才是水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;
mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)