Oracle数据库的逻辑结构和物理结构
Oracle 数据库的逻辑结构是由一些数据库对象组成,如数据库表空间、表、索引、段、视图、存储过程、触发器等。数据库的逻辑存储结构(表空间等)决定了数据库的物理空间是如何被使用的,数据库对象如表、索引等分布在各个表空间中。
Oracle 数据库的物理结构从 *** 作系统一级查看,是由一个个的文件组成,从物理上可划分为:数据文件、日志文件、控制文件和参数文件。数据文件中存放了所有的数据信息;日志文件存放数据库运行期间产生的日志信息,它被重复覆盖使用,若不采用归档方式的话,已被覆盖的日志信息将无法恢复;控制文件记录了整个数据库的关键结构信息,它若被破坏,整个数据库将无法工作和恢复;参数文件中设置了很多Oracle 数据库的配置参数,当数据库启动时,会读取这些信息。
逻辑结构的优化
逻辑结构优化用通俗的话来说就是通过增加、减少或调整逻辑结构来提高应用的效率,下面通过对基本表的设计及索引、聚簇的讨论来分析ORACLE逻辑结构的优化。
1、基本表扩展
数据库性能包括存储空间需求量的大小和查询响应时间的长短两个方面。为了优化数据库性能,需要对数据库中的表进行规范化。一般来说,逻辑数据库设计满足第三范式的表结构容易维护且基本满足实际应用的要求。所以,实际应用中一般都按照第三范式的标准进行规范化,从而保证了数据库的一致性和完整性,设计人员往往会设计过多的表间关联,以尽可能地降低数据冗余。但在实际应用中这种做法有时不利于系统运行性能的优化:如过程从多表获取数据时引发大量的连接 *** 作,在需要部分数据时要扫描整个表等,这都消耗了磁盘的I/O 和CPU 时间。
为解决这一问题,在设计表时应同时考虑对某些表进行反规范化,方法有以下几种:一是分割表。分割表可分为水平分割表和垂直分割表两种:水平分割是按照行将一个表分割为多个表,这可以提高每个表的查询速度,但查询、更新时要选择不同的表,统计时要汇总多个表,因此应用程序会更复杂。垂直分割是对于一个列很多的表,若某些列的访问频率远远高于其它列,就可以将主键和这些列作为一个表,将主键和其它列作为另外一个表。通过减少列的宽度,增加了每个数据页的行数,一次I/O就可以扫描更多的行,从而提高了访问每一个表的速度。但是由于造成了多表连接,所以应该在同时查询或更新不同分割表中的列的情况比较少的情况下使用。二是保留冗余列。当两个或多个表在查询中经常需要连接时,可以在其中一个表上增加若干冗余的列,以避免表之间的连接过于频繁,一般在冗余列的数据不经常变动的情况下使用。三是增加派生列。派生列是由表中的其它多个列的计算所得,增加派生列可以减少统计运算,在数据汇总时可以大大缩短运算时间。
因此,在数据库的设计中,数据应当按两种类别进行组织:频繁访问的数据和频繁修改的数据。对于频繁访问但是不频繁修改的数据,内部设计应当物理不规范化。对于频繁修改但并不频繁访问的数据,内部设计应当物理规范化。有时还需将规范化的表作为逻辑数据库设计的基础,然后再根据整个应用系统的需要,物理地非规范化数据。规范与反规范都是建立在实际的 *** 作基础之上的约束,脱离了实际两者都没有意义。只有把两者合理地结合在一起,才能相互补充,发挥各自的优点。
2、索引和聚簇
创建索引是提高检索效率最有效的方法之一,索引把表中的逻辑值映射到安全的RowID,能快速定位数据的物理地址,可以大大加快数据库的查询速度,一个建有合理索引的数据库应用系统可能比一个没有建立索引的数据库应用系统效率高几十倍,但并不是索引越多越好,在那些经常需要修改的数据列上建立索引,将导致索引B树的不断重组,造成系统性能的下降和存储空间的浪费。对于一个大型表建立的索引,有时并不能改善数据查询速度,反而会影响整个数据库的性能。这主要是和SGA的数据管理方式有关,Oracle在进行数据块高速缓存管理时,索引数据比普通数据具有更高的驻留权限,在进行空间竞争时,Oracle会先移出普通数据,对建有索引的大型表进行数据查询时,索引数据可能会用完所有的数据块缓存空间,Oracle不得不频繁地进行磁盘读写来获取数据,所以,在对一个大型表进行分区之后,可以根据相应的分区建立分区索引。
Oracle提供了另一种方法来提高查询速度,就是聚簇(Cluster)。所谓聚簇,简单地说就是把几个表放在一起,按一定公共属性混合存放。聚簇根据共同码值将多个表的数据存储在同一个Oracle块中,这时检索一组Oracle块就同时得到两个表的数据,这样就可以减少需要存储的Oracle块,从而提高应用程序的性能。
对于逻辑结构的优化,还应将表数据和索引数据分开表空间存储,分别使用独立的表空间。因为如果将表数据和索引数据放在一起,表数据的I/O *** 作和索引的I/O *** 作将产生影响系统性能的I/O竞争,降低系统的响应效率。将表数据和索引数据存放在不同的表空间中,并在物理层面将这两个表空间的数据文件放在不同的物理磁盘上,就可以避免这种竞争了。
物理结构的优化
数据库的数据最终是存储在物理磁盘上的,对数据进行访问就是对这些物理磁盘进行读写,因此对于这些物理存储的优化是系统优化的一个重要部分。对于物理存储结构优化,主要是合理地分配逻辑结构的物理存储地址,这样虽不能减少对物理存储的读写次数,但却可以使这些读写尽量并行,减少磁盘读写竞争,从而提高效率,也可以通过对物理存储进行精密的计算减少不必要的物理存储结构扩充,从而提高系统利用率。
1、磁盘读写并行优化
对于数据库的物理读写,Oracle系统本身会进行尽可能的并行优化,例如在一个最简单的表检索 *** 作中,如果表结构和检索域上的索引不在一个物理结构上,那么在检索的过程中,对索引的检索和对表的检索就是并行进行的。
2、 *** 作并行优化
*** 作并行的优化是基于 *** 作语句的统计结果,首先是统计各个表的访问频率,表之间的连接频率,根据这些数据按如下原则分配表空间和物理磁盘,减少系统进程和用户进程的磁盘I/O竞争;把需要连接的表格在表空间/物理磁盘上分开;把高频访问的表格在表空间/物理磁盘上分开;把经常需要进行检索的表格的表结构和索引在表空间/物理磁盘上分开。
3、减少存储结构扩展
如果应用系统的数据库比较脆弱,并在不断地增长或缩小,这样的系统在非动态变化周期内效率合理,但是当在动态变化周期内的时候,性能却很差,这是由于Oracle的动态扩展造成的。在动态扩张的过程中,Oracle必须根据存储的要求,在创建行、行变化获取缺省值时,扩展和分配新的存储空间,而且表格的扩展往往并不是事情的终结,还可能导致数据文件、表空间的增长,这些扩展会导致在线系统反应缓慢。对于这样的系统,最好的办法就是在建立的时候预先分配足够的大小和合适的增长幅度。在一个对象建立的时候要根据应用充分地计算他们的大小,然后再根据这些数据来定义对象Initial、Next和Minextents的值,使数据库在物理存储上和动态增长次数上达到一个比较好的平衡点,使这些对象既不经常发生增长,也不过多地占用数据库。
一个好的数据库产品不等于就有一个好的应用系统 如果不能设计一个合理的数据库模型 不仅会增加客户端和服务器段程序的编程和维护的难度 而且将会影响系统实际运行的性能 一般来讲 在一个MIS系统分析 设计 测试和试运行阶段 因为数据量较小 设计人员和测试人员往往只注意到功能的实现 而很难注意到性能的薄弱之处 等到系统投入实际运行一段时间后 才发现系统的性能在降低 这时再来考虑提高系统性能则要花费更多的人力物力 而整个系统也不可避免的形成了一个打补丁工程 笔者依据多年来设计和使用数据库的经验 提出以下一些设计准则 供同仁们参考
命名的规范
不同的数据库产品对对象的命名有不同的要求 因此 数据库中的各种对象的命名 后台程序的代码编写应采用大小写敏感的形式 各种对象命名长度不要超过 个字符 这样便于应用系统适应不同的数据库
游标(Cursor)的慎用
游标提供了对特定集合中逐行扫描的手段 一般使用游标逐行遍历数据 根据取出的数据不同条件进行不同的 *** 作 尤其对多表和大表定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等特甚至死机 笔者在某市《住房公积金管理系统》进行日终帐户滚积数计息处理时 对一个 万个帐户的游标处理导致程序进入了一个无限期的等特(后经测算需 个小时才能完成)(硬件环境 Alpha/ Mram Sco Unix Sybase ) 后根据不同的条件改成用不同的UPDATE语句得以在二十分钟之内完成 示例如下
Declare Mycursor cursor for select count_no from COUNT
Open Mycursor
Fetch Mycursor into @vcount_no
While (@@sqlstatus= )
Begin
If @vcount_no= 条件
*** 作
If @vcount_no= 条件
*** 作
Fetch Mycursor into @vcount_no
End
改为
Update COUNT set *** 作 for 条件
Update COUNT set *** 作 for 条件
在有些场合 有时也非得使用游标 此时也可考虑将符合条件的数据行转入临时表中 再对临时表定义游标进行 *** 作 可时性能得到明显提高 笔者在某地市〈电信收费系统〉数据库后台程序设计中 对一个表( 万行中符合条件的 多行数据)进行游标 *** 作(硬件环境 PC服务器 PII Mram NT Ms Sqlserver ) 示例如下
Create #tmp / 定义临时表 /
(字段
字段
)
Insert into #tmp select from TOTAL where
条件 / TOTAL中 万行 符合条件只有几十行 /
Declare Mycursor cursor for select from #tmp
/对临时表定义游标/
索引(Index)的使用原则
创建索引一般有以下两个目的 维护被索引列的唯一性和提供快速访问表中数据的策略 大型数据库有两种索引即簇索引和非簇索引 一个没有簇索引的表是按堆结构存储数据 所有的数据均添加在表的尾部 而建立了簇索引的表 其数据在物理上会按照簇索引键的顺序存储 一个表只允许有一个簇索引 因此 根据B树结构 可以理解添加任何一种索引均能提高按索引列查询的速度 但会降低插入 更新 删除 *** 作的性能 尤其是当填充因子(Fill Factor)较大时 所以对索引较多的表进行频繁的插入 更新 删除 *** 作 建表和索引时因设置较小的填充因子 以便在各数据页中留下较多的自由空间 减少页分割及重新组织的工作
数据的一致性和完整性
为了保证数据库的一致性和完整性 设计人员往往会设计过多的表间关联(Relation) 尽可能的降低数据的冗余 表间关联是一种强制性措施 建立后 对父表(Parent Table)和子表(Child Table)的插入 更新 删除 *** 作均要占用系统的开销 另外 最好不要用Identify 属性字段作为主键与子表关联 如果数据冗余低 数据的完整性容易得到保证 但增加了表间连接查询的 *** 作 为了提高系统的响应时间 合理的数据冗余也是必要的 使用规则(Rule)和约束(Check)来防止系统 *** 作人员误输入造成数据的错误是设计人员的另一种常用手段 但是 不必要的规则和约束也会占用系统的不必要开销 需要注意的是 约束对数据的有效性验证要比规则快 所有这些 设计人员在设计阶段应根据系统 *** 作的类型 频度加以均衡考虑
事务的陷阱
事务是在一次性完成的一组 *** 作 虽然这些 *** 作是单个的 *** 作 SQL Server能够保证这组 *** 作要么全部都完成 要么一点都不做 正是大型数据库的这一特性 使得数据的完整性得到了极大的保证
众所周知 SQL Server为每个独立的SQL语句都提供了隐含的事务控制 使得每个DML的数据 *** 作得以完整提交或回滚 但是SQL Server还提供了显式事务控制语句
BEGIN TRANSACTION 开始一个事务
MIT TRANSACTION 提交一个事务
ROLLBACK TRANSACTION 回滚一个事务
事务可以嵌套 可以通过全局变量@@trancount检索到连接的事务处理嵌套层次 需要加以特别注意并且极容易使编程人员犯错误的是 每个显示或隐含的事物开始都使得该变量加 每个事务的提交使该变量减 每个事务的回滚都会使得该变量置 而只有当该变量为 时的事务提交(最后一个提交语句时) 这时才把物理数据写入磁盘
数据库性能调整
在计算机硬件配置和网络设计确定的情况下 影响到应用系统性能的因素不外乎为数据库性能和客户端程序设计 而大多数数据库设计员采用两步法进行数据库设计 首先进行逻辑设计 而后进行物理设计 数据库逻辑设计去除了所有冗余数据 提高了数据吞吐速度 保证了数据的完整性 清楚地表达数据元素之间的关系 而对于多表之间的关联查询(尤其是大数据表)时 其性能将会降低 同时也提高了客 户端程序的编程难度 因此 物理设计需折衷考虑 根据业务规则 确定对关联表的数据量大小 数据项的访问频度 对此类数据表频繁的关联查询应适当提高数据冗余设计
数据类型的选择
数据类型的合理选择对于数据库的性能和 *** 作具有很大的影响 有关这方面的书籍也有不少的阐述 这里主要介绍几点经验
Identify字段不要作为表的主键与其它表关联 这将会影响到该表的数据迁移
Text 和Image字段属指针型数据 主要用来存放二进制大型对象(BLOB) 这类数据的 *** 作相比其它数据类型较慢 因此要避开使用
日期型字段的优点是有众多的日期函数支持 因此 在日期的大小比较 加减 *** 作上非常简单 但是 在按照日期作为条件的查询 *** 作也要用函数 相比其它数据类型速度上就慢许多 因为用函数作为查询的条件时 服务器无法用先进的性能策略来优化查询而只能进行表扫描遍历每行
例如 要从DATA_TAB 中(其中有一个名为DATE的日期字段)查询 年的所有记录
lishixinzhi/Article/program/Oracle/201311/17929
数据库是依照某种数据模型组织起来并存放二级存储器中的数据集合。这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改和检索由统一软件进行管理和控制。 数据库的基本结构分三个层次,反映了观察数据库的三种不同角度:
1、物理数据层。它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令 *** 作处理的位串、字符和字组成;
2、概念数据层。它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。是数据库管理员概念下的数据库;
3、逻辑数据层。它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。 数据库不同层次之间的联系是通过映射进行转换的。
E-R图的组件有很多,但概括起来说,可分为以下四种:
线段:用于将实体、关系相连接
对于双矩形、双菱形、双椭圆、双线段等等一些组件,可以不用去管,通常用以上四种组件就可以表达清楚实体及实体间的关系。
从E-R图向关系模式转化 数据库的逻辑设计主要是将概念模型转换成一般的关系模式,也就是将E-R图中的实体、实体的属性和实体之间的联系转化为关系模式。在转化过程中会遇到如下问题:
(1)命名问题。命名问题可以采用原名,也可以另行命名,避免重名。
(2)非原子属性问题。非原子属性问题可将其进行纵向和横行展开。
(3)联系转换问题。联系可用关系表示。 1、标识实体:
通常有用户、角色这两个实体。
2、标识关系:
用户与角色间为多对多的互相拥有关系。
3、标识实体、关系的属性:
不仅仅是实体有属性,关系同样也有属性,这些属性在实体间建立关系时才会存在。
有时属性太多,无法在图上一一列出,可以用表格,在后面的步骤中这个表格同样会用到,如下: 实体 属性 描述 … 用户 性别
年龄
电话
… 男/女
多大了
****
… … 4、确定属性域:
属性域就是属性的取值范围。
这时,可以用表格将属性的数据类型、数据长度、取值范围及是否可为空、简单/复合、单值/多值、是否为派生属性等域信息定义出来。
这个过程,事实上包含了逻辑结构设计中的数据类型、NULL、CHECK、DEFAULT等信息。 实体 属性 描述 数据类型及长度 是否可为空 用户 性别
年龄
电话
… 男/女
多大了
****
… 1字节的短整形或布尔型
1字节的短整形
20字节的字符型或长整形
… NO
NO
YES 5、确定键:键就是可用于标识实体的属性,有:主键、唯一键、外键。 实体 属性 描述 键 用户 用户编号
性别
年龄
电话
… 男/女
多大了
****
… 主键 6、实体的特化/泛化:
也就是面向对象模型中父类和子类的概念,这是个可选的步骤。举个例子,用户中大部分人都是普通员工,但有一小部分是从事销售的,销售人员
有个负责区域的属性,如果将这个属性放在用户实体中,如右图:
这时我们会发现,除了销售人员外,其他非销售人员这个属性全都不存在,这就是特化的过程。可以另建一个销售人员的实体来泛化用户实体,如右图:
这样就完成了对用户实体的泛化,泛化的过程也就是抽出实体间公共属性的过程,但通常,除非特化的部分太多,才会考虑将一个实体抽象成两个
1对1关系的实体,所有这个步骤是可选的。
7、检查模型:
(1)检查冗余
首先检查实体:1对1关系的实体中有没有非外键的重复属性,或者就是同一个实体;
其次检查关系:有没有通过其他关系也可以得到的重复属性;
当然有时,需要考虑时间维度,因为有些属性是有时效性的,也就是虽然是同一个属性,但不同的时间表示的却是不同的内容,这一点在后面的逻辑结构设计中会提到,这并不是真正的冗余。
(2)检查业务
检查当前的E-R模型是否满足当前业务的场景。可以从某个实体开始,沿着当前E-R模型的各个节点去模拟业务场景。尤其需要和《需求规格说明书》去做校验。
到这里,也就完成了E-R模型建立的全过程,有时,对于比较复杂的E-R模型,一张图可能显得太过局促,可以建立全局、局部E-R模型图,以便于查看和分析。
主从式结构
是指一个主机带多个终端的多用户结构。在这种结构中,数据库系统,包括:应用程序、DBMS、数据,都集中存放在主机上.所有处理任务都由主机来完成,各个用户通过主机的终端并发地存取数据库,共享数据资源
主从式结构的优点是简单,数据易于管理与维护。缺点是当终端用户数目增加到一定程度后,主机的任务会过分繁重,形成瓶颈,从而使系统性能大幅度下降。另外当主机出现故障时,整个系统都不能使用,因此系统的可靠性不高。
集中式架构
是一种远程桌面控制技术,使用此技术,远程用户能够使用任何类型的终端系统,通过任何类型的网络连接,使用远程服务器上的应用程序。用户甚至能够使用同一个终端系统访问甚至远程多个不同平台、不同网络协议服务器上的多个应用,这些应用被集成在一个访问界面中, *** 作简便。
C/S架构
(Client/Server或客户/服务器模式):Client和Server常常分别处在相距很远的两台计算机上,Client程序的任务是将用户的要求提交给Server程序,再将Server程序返回的结果以特定的形式显示给用户;Server程序的任务是接收客户程序提出的服务请求,进行相应的处理,再将结果返回给客户程序。
C/S (Client/Server)结构,即大家熟知的客户机和服务器结构。它是软件系统体系结构,通过它可以充分利用两端硬件环境的优势,将任务合理分配到Client端和Server端来实现,降低了系统的通讯开销。目前大多数应用软件系统都是Client/Server形式的两层结构,由于现在的软件应用系统正在向分布式的Web应用发展,Web和Client/Server 应用都可以进行同样的业务处理,应用不同的模块共享逻辑组件;因此,内部的和外部的用户都可以访问新的和现有的应用系统,通过现有应用系统中的逻辑可以扩展出新的应用系统。这也就是目前应用系统的发展方向。
传统的C/S体系结构虽然采用的是开放模式,但这只是系统开发一级的开放性,在特定的应用中无论是Client端还是Server端都还需要特定的软件支持。由于没能提供用户真正期望的开放环境,C/S结构的软件需要针对不同的 *** 作系统系统开发不同版本的软件, 加之产品的更新换代十分快,已经很难适应百台电脑以上局域网用户同时使用。而且代价高, 效率低。
C/S结构的优点
C/S结构的优点是能充分发挥客户端PC的处理能力,很多工作可以在客户端处理后再提交给服务器。对应的优点就是客户端响应速度快。缺点主要有以下几个:
只适用于局域网。而随着互联网的飞速发展,移动办公和分布式办公越来越普及,这需要我们的系统具有扩展性。这种方式远程访问需要专门的技术,同时要对系统进行专门的设计来处理分布式的数据。
客户端需要安装专用的客户端软件。首先涉及到安装的工作量,其次任何一台电脑出问题,如病毒、硬件损坏,都需要进行安装或维护。特别是有很多分部或专卖店的情况,不是工作量的问题,而是路程的问题。还有,系统软件升级时,每一台客户机需要重新安装,其维护和升级成本非常高。
对客户端的 *** 作系统一般也会有限制。可能适应于Win98, 但不能用于win2000或Windows XP。或者不适用于微软新的 *** 作系统等等,更不用说Linux、Unix等。
以上就是关于说明在创建数据库时如何合理规划数据库的物理存储结构和逻辑存储结构全部的内容,包括:说明在创建数据库时如何合理规划数据库的物理存储结构和逻辑存储结构、大型数据库设计原则、简述数据库的逻辑结构等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)