数据库性能优化有哪些措施?

数据库性能优化有哪些措施?,第1张

1、调整数据结构的设计

这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计

这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句

应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(OracleOptimizer)和行锁管理器(row-levelmanager)来调整优化SQL语句。

4、调整服务器内存分配

内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O

这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数

例如:运行在UNIX *** 作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。

一、ORACLE数据库性能优化工具

常用的数据库性能优化工具有:

ORACLE数据库在线数据字典,ORACLE在线数据字典能够反映出ORACLE动态运行情况,对于调整数据库性能是很有帮助的。

*** 作系统工具,例如UNIX *** 作系统的vmstat,iostat等命令可以查看到系统系统级内存和硬盘I/O的使用情况,这些工具对于管理员弄清出系统瓶颈出现在什么地方有时候很有用。

SQL语言跟踪工具(SQLTRACEFACILITY),SQL语言跟踪工具可以记录SQL语句的执行情况,管理员可以使用虚拟表来调整实例,使用SQL语句跟踪文件调整应用程序性能。SQL语言跟踪工具将结果输出成一个 *** 作系统的文件,管理员可以使用TKPROF工具查看这些文件。

ORACLEEnterpriseManager(OEM),这是一个图形的用户管理界面,用户可以使用它方便地进行数据库管理而不必记住复杂的ORACLE数据库管理的命令。

EXPLAINPLAN——SQL语言优化命令,使用这个命令可以帮助程序员写出高效的SQL语言。

二、ORACLE数据库的系统性能评估

信息系统的类型不同,需要关注的数据库参数也是不同的。数据库管理员需要根据自己的信息系统的类型着重考虑不同的数据库参数。

1、在线事务处理信息系统(OLTP),这种类型的信息系统一般需要有大量的Insert、Update *** 作,典型的系统包括民航机票发售系统、银行储蓄系统等。OLTP系统需要保证数据库的并发性、可靠性和最终用户的速度,这类系统使用的ORACLE数据库需要主要考虑下述参数:

数据库回滚段是否足够?

是否需要建立ORACLE数据库索引、聚集、散列?

系统全局区(SGA)大小是否足够?

SQL语句是否高效?

2、数据仓库系统(DataWarehousing),这种信息系统的主要任务是从ORACLE的海量数据中进行查询,得到数据之间的某些规律。数据库管理员需要为这种类型的ORACLE数据库着重考虑下述参数:

是否采用B*-索引或者bitmap索引?

是否采用并行SQL查询以提高查询效率?

是否采用PL/SQL函数编写存储过程?

有必要的话,需要建立并行数据库提高数据库的查询效率

三、SQL语句的调整原则

SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率是很不相同的。程序员可以使用EXPLAINPLAN语句来比较各种实现方案,并选出最优的实现方案。总得来讲,程序员写SQL语句需要满足考虑如下规则:

1、尽量使用索引。试比较下面两条SQL语句:

语句A:SELECTdname,deptnoFROMdeptWHEREdeptnoNOTIN

(SELECTdeptnoFROMemp)

语句B:SELECTdname,deptnoFROMdeptWHERENOTEXISTS

(SELECTdeptnoFROMempWHEREdept.deptno=emp.deptno)

这两条查询语句实现的结果是相同的,但是执行语句A的时候,ORACLE会对整个emp表进行扫描,没有使用建立在emp表上的deptno索引,执行语句B的时候,由于在子查询中使用了联合查询,ORACLE只是对emp表进行的部分数据扫描,并利用了deptno列的索引,所以语句B的效率要比语句A的效率高一些。

2、选择联合查询的联合次序。考虑下面的例子:

SELECTstuffFROMtabaa,tabbb,tabcc

WHEREa.acolbetween:alowand:ahigh

ANDb.bcolbetween:blowand:bhigh

ANDc.ccolbetween:clowand:chigh

ANDa.key1=b.key1

AMDa.key2=c.key2

这个SQL例子中,程序员首先需要选择要查询的主表,因为主表要进行整个表数据的扫描,所以主表应该数据量最小,所以例子中表A的acol列的范围应该比表B和表C相应列的范围小。

3、在子查询中慎重使用IN或者NOTIN语句,使用where(NOT)exists的效果要好的多。

4、慎重使用视图的联合查询,尤其是比较复杂的视图之间的联合查询。一般对视图的查询最好都分解为对数据表的直接查询效果要好一些。

5、可以在参数文件中设置SHARED_POOL_RESERVED_SIZE参数,这个参数在SGA共享池中保留一个连续的内存空间,连续的内存空间有益于存放大的SQL程序包。

6、ORACLE公司提供的DBMS_SHARED_POOL程序可以帮助程序员将某些经常使用的存储过程“钉”在SQL区中而不被换出内存,程序员对于经常使用并且占用内存很多的存储过程“钉”到内存中有利于提高最终用户的响应时间。

四、CPU参数的调整

CPU是服务器的一项重要资源,服务器良好的工作状态是在工作高峰时CPU的使用率在90%以上。如果空闲时间CPU使用率就在90%以上,说明服务器缺乏CPU资源,如果工作高峰时CPU使用率仍然很低,说明服务器CPU资源还比较富余。

使用 *** 作相同命令可以看到CPU的使用情况,一般UNIX *** 作系统的服务器,可以使用sar_u命令查看CPU的使用率,NT *** 作系统的服务器,可以使用NT的性能管理器来查看CPU的使用率。

数据库管理员可以通过查看v$sysstat数据字典中“CPUusedbythissession”统计项得知ORACLE数据库使用的CPU时间,查看“OSUserlevelCPUtime”统计项得知 *** 作系统用户态下的CPU时间,查看“OSSystemcallCPUtime”统计项得知 *** 作系统系统态下的CPU时间, *** 作系统总的CPU时间就是用户态和系统态时间之和,如果ORACLE数据库使用的CPU时间占 *** 作系统总的CPU时间90%以上,说明服务器CPU基本上被ORACLE数据库使用着,这是合理,反之,说明服务器CPU被其它程序占用过多,ORACLE数据库无法得到更多的CPU时间。

数据库管理员还可以通过查看v$sesstat数据字典来获得当前连接ORACLE数据库各个会话占用的CPU时间,从而得知什么会话耗用服务器CPU比较多。

出现CPU资源不足的情况是很多的:SQL语句的重解析、低效率的SQL语句、锁冲突都会引起CPU资源不足。

1、数据库管理员可以执行下述语句来查看SQL语句的解析情况:

SELECT*FROMV$SYSSTATWHERENAMEIN

('parsetimecpu','parsetimeelapsed','parsecount(hard)')

这里parsetimecpu是系统服务时间,parsetimeelapsed是响应时间,用户等待时间,waitetime=parsetimeelapsed_parsetimecpu

由此可以得到用户SQL语句平均解析等待时间=waitetime/parsecount。这个平均等待时间应该接近于0,如果平均解析等待时间过长,数据库管理员可以通过下述语句

SELECTSQL_TEXT,PARSE_CALLS,EXECUTIONSFROMV$SQLAREA

ORDERBYPARSE_CALLS

来发现是什么SQL语句解析效率比较低。程序员可以优化这些语句,或者增加ORACLE参数SESSION_CACHED_CURSORS的值。

2、数据库管理员还可以通过下述语句:

SELECTBUFFER_GETS,EXECUTIONS,SQL_TEXTFROMV$SQLAREA

查看低效率的SQL语句,优化这些语句也有助于提高CPU的利用率。

3、数据库管理员可以通过v$system_event数据字典中的“latchfree”统计项查看ORACLE数据库的冲突情况,如果没有冲突的话,latchfree查询出来没有结果。如果冲突太大的话,数据库管理员可以降低spin_count参数值,来消除高的CPU使用率。

五、内存参数的调整

内存参数的调整主要是指ORACLE数据库的系统全局区(SGA)的调整。SGA主要由三部分构成:共享池、数据缓冲区、日志缓冲区。

1、共享池由两部分构成:共享SQL区和数据字典缓冲区,共享SQL区是存放用户SQL命令的区域,数据字典缓冲区存放数据库运行的动态信息。数据库管理员通过执行下述语句:

select(sum(pins-reloads))/sum(pins)"LibCache"fromv$librarycache

来查看共享SQL区的使用率。这个使用率应该在90%以上,否则需要增加共享池的大小。数据库管理员还可以执行下述语句:

select(sum(gets-getmisses-usage-fixed))/sum(gets)"RowCache"fromv$rowcache

查看数据字典缓冲区的使用率,这个使用率也应该在90%以上,否则需要增加共享池的大小。

2、数据缓冲区。数据库管理员可以通过下述语句:

SELECTname,valueFROMv$sysstatWHEREnameIN('dbblockgets','consistentgets','physicalreads')

来查看数据库数据缓冲区的使用情况。查询出来的结果可以计算出来数据缓冲区的使用命中率=1-(physicalreads/(dbblockgets+consistentgets))。

这个命中率应该在90%以上,否则需要增加数据缓冲区的大小。

3、日志缓冲区。数据库管理员可以通过执行下述语句:

selectname,valuefromv$sysstatwherenamein('redoentries','redologspacerequests')

查看日志缓冲区的使用情况。查询出的结果可以计算出日志缓冲区的申请失败率:

申请失败率=requests/entries,申请失败率应该接近于0,否则说明日志缓冲区开设太小,需要增加ORACLE数据库的日志缓冲区。

昆明北大青鸟java培训班转载自网络如有侵权请联系我们感谢您的关注谢谢支持

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。

关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Redundant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement)

1 引言

数据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘I/O瓶颈和减少资源竞争,相信读者会一目了然。

2 基于第三范式的基本表设计

在基于表驱动的信息管理系统(MIS)中,基本表的设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。

在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重要意义:

(1)主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键最佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多,复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。

(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。

(3)索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问,在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能最好,因此定期更新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算索引的大小。

① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索引。

② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引的开销大于索引的效益,这时,建立临时表存储有关数据更有效。

批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。

(4)锁:锁是并行处理的重要机制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用;给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一批处理应该没有网络交互。

(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到:

① 尽可能少的行;

② 避免排序或为尽可能少的行排序,若要做大量数据排序,最好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序;

③ 避免表内的相关子查询;

④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接;

⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接;

⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。

除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。

3 基本表扩展设计

基于第三范式设计的库表虽然有其优越性(见本文第一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。

尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。

如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。

3.1 分割表或储存冗余数据

分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。

水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。

垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。

总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。

注意,在分割表以后,要考虑重新建立索引。

3.2 存储衍生数据

对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:

若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。

若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。

若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。

总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。

3.3 消除昂贵结合

对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。

4 数据库对象的放置策略

数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。

⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。

⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。

⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。

⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺;

⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,最大化磁盘的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然最好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系统授权更加灵活。

在进行软件开发过程中,数据库的使用是非常重要的,但是数据库有很多种,不同数据库的使用方法是不同的。进行软件开发过程中,至少需要掌握一种数据库的使用方法。SQL数据库语法简单、 *** 作方便和高效,是很多人最优的选择,但是SQL语句会受到不同数据库功能的影响,在计算时间和语言的效率上面需要进行优化,根据实际情况进行调整。下面电脑培训为大家介绍SQL数据库的优化方法。

一、适当的索引

索引基本上是一种数据结构,有助于加速整个数据检索过程。唯一索引是创建不重叠的数据列的索引。正确的索引可以更快地访问数据库,但是索引太多或没有索引会导致错误的结果。IT培训认为如果没有索引,处理速度会变得非常慢。

二、仅索引相关数据

指定需要检索数据的精度。使用命令*和LIMIT代替SELECT*。调整数据库时,必须使用所需的数据集而不是整个数据集,尤其是当数据源非常大时,指定所需的数据集,能够节省大部分时间。

三、根据需求使用或避免临时表

如果代码可以用简单的方式编写,那么永远不要使临时表变得复杂。当然,如果数据具有需要多个查询的特定程序,北大青鸟建议在这种情况下,使用临时表。临时表通常由子查询交替。

四、避免编码循环

避免编码循环是非常重要的,因为它会减慢整个序列的速度。通过使用具有单行的唯一UPDATE或INSERT命令来避免编码循环,并且昆明北大青鸟发现WHERE命令能够确保存储的数据不被更新,这样能够方便在找到匹配和预先存在的数据时被找到。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9624717.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-30
下一篇 2023-04-30

发表评论

登录后才能评论

评论列表(0条)

保存