多级索引
空间数据库的索引是提高空间数据库存储效率和空间检索性能的关键技术。介绍了空间数据库中建立索引的常用技术,给出了一种多级空间索引,详细讨论了该索引的建立算法以及应用该索引的检索算法,并进行了算法分析。关键词:计算机软件;间数据库;空间索引;空间检索;算法分析。
中文名
多级索引
方法
索引分割单元格网索引等
解释
将多个索引方法组合使用
性质
计算机学
快速
导航
原理
含义
多级索引是将多个不同或相同的索引方法组合使用,对单级索引空间或者空间范围进行多级划分,解决超大型数据量的GIS系统检索、分析、显示的效率问题。多级索引由于其多级的结构特性,往往可以很好地利用计算机硬件资源的并行工作特性,如多CPU,磁盘阵列等,来提高检索的效率。多级索引方法很多,不同的单级索引组合便可以构成不同的多级索引方法。但是由于每种索引的特性不同,所以如何将多种索引融合成一体构成一种高效的多级索引也是空间索引的一个研究方向。
1合理使用索引\x0d\索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。\x0d\索引的使用要恰到好处,其使用原则如下:\x0d\在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。\x0d\在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。\x0d\在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。\x0d\如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。\x0d\使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而 使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量 数据后,删除并重建索引可以提高查询速度。\x0d\(1)在下面两条select语句中:\x0d\SELECT FROM table1 WHERE field1=0; \x0d\SELECT FROM table1 WHERE field1>=0 AND field1=0,则第一条select语句要比第二条select语句效率高的多,因为第二条select语句的第一个条件耗费了大量的系统资源。\x0d\第一个原则:在where子句中应把最具限制性的条件放在最前面。\x0d\(2)在下面的select语句中:\x0d\SELECT FROM tab WHERE a= AND b= AND c=;\x0d\若有索引index(a,b,c),则where子句中字段的顺序应和索引中字段顺序一致。\x0d\第二个原则:where子句中字段的顺序应和索引中字段顺序一致。\x0d\—————————————————————————— \x0d\以下假设在field1上有唯一索引I1,在field2上有非唯一索引I2。 \x0d\—————————————————————————— \x0d\(3) SELECT field3,field4 FROM tb WHERE field1='sdf' 快 \x0d\SELECT FROM tb WHERE field1='sdf' 慢[/cci]\x0d\因为后者在索引扫描后要多一步ROWID表访问。\x0d\(4) SELECT field3,field4 FROM tb WHERE field1>='sdf' 快 \x0d\SELECT field3,field4 FROM tb WHERE field1>'sdf' 慢\x0d\因为前者可以迅速定位索引。\x0d\(5) SELECT field3,field4 FROM tb WHERE field2 LIKE 'R%' 快 \x0d\SELECT field3,field4 FROM tb WHERE field2 LIKE '%R' 慢,\x0d\因为后者不使用索引。\x0d\(6) 使用函数如: \x0d\SELECT field3,field4 FROM tb WHERE upper(field2)='RMN'不使用索引。\x0d\如果一个表有两万条记录,建议不使用函数;如果一个表有五万条以上记录,严格禁止使用函数!两万条记录以下没有限制。\x0d\(7) 空值不在索引中存储,所以 \x0d\SELECT field3,field4 FROM tb WHERE field2 IS[NOT] NULL不使用索引。\x0d\(8) 不等式如 \x0d\SELECT field3,field4 FROM tb WHERE field2!='TOM'不使用索引。 \x0d\相似地, \x0d\SELECT field3,field4 FROM tb WHERE field2 NOT IN('M','P')不使用索引。\x0d\(9) 多列索引,只有当查询中索引首列被用于条件时,索引才能被使用。\x0d\(10) MAX,MIN等函数,使用索引。 \x0d\SELECT max(field2) FROM tb 所以,如果需要对字段取max,min,sum等,应该加索引。\x0d\一次只使用一个聚集函数,如: \x0d\SELECT “min”=min(field1), “max”=max(field1) FROM tb \x0d\不如:SELECT “min”=(SELECT min(field1) FROM tb) , “max”=(SELECT max(field1) FROM tb)\x0d\(11) 重复值过多的索引不会被查询优化器使用。而且因为建了索引,修改该字段值时还要修改索引,所以更新该字段的 *** 作比没有索引更慢。\x0d\(12) 索引值过大(如在一个char(40)的字段上建索引),会造成大量的I/O开销(甚至会超过表扫描的I/O开销)。因此,尽量使用整数索引。 Sp_estspace可以计算表和索引的开销。\x0d\(13) 对于多列索引,ORDER BY的顺序必须和索引的字段顺序一致。\x0d\(14) 在sybase中,如果ORDER BY的字段组成一个簇索引,那么无须做ORDER BY。记录的排列顺序是与簇索引一致的。\x0d\(15) 多表联结(具体查询方案需要通过测试得到) \x0d\where子句中限定条件尽量使用相关联的字段,且尽量把相关联的字段放在前面。 \x0d\SELECT afield1,bfield2 FROM a,b WHERE afield3=bfield3\x0d\field3上没有索引的情况下: \x0d\对a作全表扫描,结果排序 \x0d\对b作全表扫描,结果排序 \x0d\结果合并。 \x0d\对于很小的表或巨大的表比较合适。\x0d\field3上有索引 \x0d\按照表联结的次序,b为驱动表,a为被驱动表 \x0d\对b作全表扫描 \x0d\对a作索引范围扫描 \x0d\如果匹配,通过a的rowid访问\x0d\(16) 避免一对多的join。如: \x0d\SELECT tb1field3,tb1field4,tb2field2 FROM tb1,tb2 WHERE tb1field2=tb2field2 AND tb1field2=‘BU1032’ AND tb2field2= ‘aaa’ \x0d\不如: \x0d\declare @a varchar(80) \x0d\SELECT @a=field2 FROM tb2 WHERE field2=‘aaa’ \x0d\SELECT tb1field3,tb1field4,@a FROM tb1 WHERE field2= ‘aaa’\x0d\(16) 子查询 \x0d\用exists/not exists代替in/not in *** 作 \x0d\比较: \x0d\SELECT afield1 FROM a WHERE afield2 IN(SELECT bfield1 FROM b WHERE bfield2=100) \x0d\SELECT afield1 FROM a WHERE EXISTS( SELECT 1 FROM b WHERE afield2=bfield1 AND bfield2=100) \x0d\SELECT field1 FROM a WHERE field1 NOT IN( SELECT field2 FROM b) \x0d\SELECT field1 FROM a WHERE NOT EXISTS( SELECT 1 FROM b WHERE bfield2=afield1)\x0d\(17) 主、外键主要用于数据约束,sybase中创建主键时会自动创建索引,外键与索引无关,提高性能必须再建索引。\x0d\(18) char类型的字段不建索引比int类型的字段不建索引更糟糕。建索引后性能只稍差一点。\x0d\(19) 使用count()而不要使用count(column_name),避免使用count(DISTINCT column_name)。\x0d\(20) 等号右边尽量不要使用字段名,如: \x0d\SELECT FROM tb WHERE field1 = field3\x0d\(21) 避免使用or条件,因为or不使用索引。\x0d\2避免使用order by和group by字句。\x0d\因为使用这两个子句会占用大量的临时空间(tempspace),如果一定要使用,可用视图、人工生成临时表的方法来代替。 \x0d\如果必须使用,先检查memory、tempdb的大小。 \x0d\测试证明,特别要避免一个查询里既使用join又使用group by,速度会非常慢!\x0d\3尽量少用子查询,特别是相关子查询。因为这样会导致效率下降。\x0d\一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。\x0d\4.消除对大型表行数据的顺序存取\x0d\在 嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。 \x0d\比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询 10亿行数据。 \x0d\避免这种情况的主要方法就是对连接的列进行索引。 \x0d\例如,两个表:学生表(学号、姓名、年龄)和选课表(学号、课程号、成绩)。如果两个 表要做连接,就要在“学号”这个连接字段上建立索引。 \x0d\还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。 \x0d\下面的查询将强迫对orders表执行顺序 *** 作: \x0d\SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 \x0d\虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句: \x0d\SELECT * FROM orders WHERE customer_num=104 AND order_num>1001 \x0d\UNION \x0d\SELECT * FROM orders WHERE order_num=1008 \x0d\这样就能利用索引路径处理查询。\x0d\5.避免困难的正规表达式\x0d\MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _” \x0d\即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。 \x0d\另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。\x0d\6.使用临时表加速查询\x0d\把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如: \x0d\SELECT custname,rcvblesbalance,other COLUMNS \x0d\FROM cust,rcvbles \x0d\WHERE custcustomer_id = rcvlbescustomer_id \x0d\AND rcvbllsbalance>0 \x0d\AND custpostcode>“98000” \x0d\ORDER BY custname \x0d\如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序: \x0d\SELECT custname,rcvblesbalance,other COLUMNS \x0d\FROM cust,rcvbles \x0d\WHERE custcustomer_id = rcvlbescustomer_id \x0d\AND rcvbllsbalance>;0 \x0d\ORDER BY custname \x0d\INTO TEMP cust_with_balance \x0d\然后以下面的方式在临时表中查询: \x0d\SELECT * FROM cust_with_balance \x0d\WHERE postcode>“98000” \x0d\临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。 \x0d\注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。\x0d\7.用排序来取代非顺序存取\x0d\非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
Oracle数据库索引的大小是指索引所占用的空间,即索引的存储大小。索引的大小可以通过查看表空间的大小来确定,也可以通过查看数据库中每个索引的大小来确定。此外,Oracle数据库索引的大小还可以通过查看表空间的使用率来确定,以及查看每个索引的使用率来确定。
1对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0
3应尽量避免在 where 子句中使用!=或<> *** 作符,否则引擎将放弃使用索引而进行全表扫描。
4应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:select id from t where num=10 union all select id from t where num=20
5in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3
6下面的查询也将导致全表扫描:select id from t where name like '李%'若要提高效率,可以考虑全文检索。
7 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num
8应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=1002
9应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)='abc' ,name以abc开头的id
应改为:
select id from t where name like 'abc%'
10不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t()
13很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=anum)
14并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15 索引并不是越多越好,索引固然可 以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19任何地方都不要使用 select from t ,用具体的字段列表代替“”,不要返回用不到的任何字段。
20尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21避免频繁创建和删除临时表,以减少系统表资源的消耗。
22临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25尽量避免使用游标,因为游标的效率较差,如果游标 *** 作的数据超过1万行,那么就应该考虑改写。
26使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27 与临时表一样,游标并不是不可使 用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。
29尽量避免大事务 *** 作,提高系统并发能力。
30尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
以上就是关于数据库里面什么是一级索引全部的内容,包括:数据库里面什么是一级索引、数据库建立索引怎么利用索引查询、oracle数据库索引的大小事怎么说的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)