PREPARE如果有 SELECT, DATABASE, CREATE DATABASE, or CLOSE DATABASE语句的话,里面最多只能有其中的一个,Informix PREPARE不允许同时出现多个以分号分隔的上述语句
select
trunc(sum(a)),
trunc(sum(b))
from(
select
nvl(case
when
Time
between
A
and
B
then
count(id)
end,
0)
a,
nvl(case
when
Time
between
C
adn
D
then
count(id)
end,
0)b
from
table
group
by
id,Time)
--TRUNC(),截取。如:TRUNC(1095,0)position截取的位置
>
这是ORACLE下的SQL,phonetable你的电话号码表,phonenum电话号码字段,substr是截取字符串函数,length是取字符串长度函数,||是连接两个字符串的函数,(我说的你应该都知道,如果不知道在informix下相应的函数,可以百度搜索一下就知道了),大概意思就是这样,你试试吧。
update phonetable
set phonenum = '897' || substr(phonenum,3,length(phonenum)-2)
where phonenum like '85%'
--------------------------------------------------------------
不知道你说的某种情况是那种情况?除非数据库不稳定,否则你就安心使用。
我在更新500万记录的表时一直这么用,没出遇到过任何问题,效率肯定比存储过程要快得多。
如果你怕出错,那么你可以先把表进行备份然后处理,待检查无误后再做处理。
1、空间不足,指的是chunk不够了,可以通过onspaces -a来增加chunk;
2、删除表中多余的数据chunk大小是不是变的,表空间在创建的时候大小已经设置好了,要增加也只能通过上面的方法来增加大小,删除表中的数据也只是增大表extent的剩余空间;
3、使用命令oncheck -pt可以清楚的看出空间的使用情况
下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
AND custpostcode>“98000”
ORDER BY custname
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
ORDER BY custname
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号零件描述其他列
(part_num)(part_desc)(other column)
102,032Seageat 30G disk……
500,049Novel 10M network card……
……
2.vendor表
厂商号厂商名其他列
(vendor _num)(vendor_name) (other column)
910,257Seageat Corp……
523,045IBM Corp……
……
3.parven表
零件号厂商号零件数量
(part_num)(vendor_num)(part_amount)
102,032910,2573,450,000
234,423321,0014,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE partpart_num=parvenpart_num
AND parvenvendor_num = vendorvendor_num
ORDER BY partpart_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表行尺寸行数量每页行数量数据页数量
(table)(row size)(Row count)(Rows/Pages)(Data Pages)
part15010,00025400
Vendor1501,000 2540
Parven13 15,000300 50
索引键尺寸每页键数量页面数量
(Indexes)(Key Size)(Keys/Page)(Leaf Pages)
part450020
Vendor45002
Parven825060
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取15万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为504万次。
以上就是关于informix数据库报错全部的内容,包括:informix数据库报错、informix是什么数据库、informix 数据库 导入导出数据表等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)