学生(学号,姓名,出生年月,班号)
班级(班号,专业名,入校年份,人数)
专业(专业名,系号)
系(系名,系号,系办公室地点,人数,学生宿舍区)
学会(学会名,成立年份,地点,人数)
学生学会(学号,学会名,入会年份)
模式的极小函数依赖集:
学生{学号→姓名,学号→出生年月,学号→班号},不存在传递依赖和部分依赖,班号为外码;
班级{班号→专业名,班号→入校年份,班号→人数},不存在传递依赖和部分依赖,专业名为外码;
专业{专业名→系号},不存在传递依赖和部分依赖,系号为外码;
系{系号→系名,系号→系办公室地点,系号→人数,系号→学生宿舍区},不存在传递依赖和部分依赖;
学会{学会名→成立年份,学会名→地点,学会名→人数},不存在传递依赖和部分依赖;
学生学会{(学号,学会名)→入会年份},不存在传递依赖和部分依赖。
最小函数依赖集就是把函数依赖集依据化简规则消除不必要的/重复的函数依赖。求最小函数依赖集分三步:
1.将F中的所有依赖右边化为单一元素
此题fd={abd->e,ab->g,b->f,c->j,cj->i,g->h}已经满足
2.去掉F中的所有依赖左边的冗余属性.
作法是属性中去掉其中的一个,看看是否依然可以推导
此题:abd->e,去掉a,则(bd)+不含e,故不能去掉,同理b,d都不是冗余属性
ab->g,也没有
cj->i,因为c+={c,j,i}其中包含i所以j是冗余的.cj->i将成为c->i
F={abd->e,ab->g,b->f,c->j,c->i,g->h}
3.去掉F中所有冗余依赖关系.
做法为从F中去掉某关系,如去掉(X->Y),然后在F中求X+,如果Y在X+中,则表明x->是多余的.需要去掉.
此题如果F去掉abd->e,F将等于{ab->g,b->f,c->j,c->i,g->h},而(abd)+={a,d,b,f,g,h},其中不包含e.所有不是多余的.
同理(ab)+={a,b,f}也不包含g,故不是多余的.
b+={b}不多余,c+={c,i}不多余
c->i,g->h多不能去掉.
所以所求最小函数依赖集为 F={abd->e,ab->g,b->f,c->j,c->i,g->h}
最小函数依赖集
定义:如果函数依赖集F满足下列条件,则称F为最小函数依赖集或最小覆盖。
① F中的任何一个函数依赖的右部仅含有一个属性;
② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价;
③ F中不存在这样一个函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。
算法:计算最小函数依赖集。
输入 一个函数依赖集
输出 F的一个等价的最小函数依赖集G
步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性;
② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖;
③ 去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A属于(X)+,则Y是多余属性,可以去掉。
举例:已知关系模式R,U={A,B,C,D,E,G},F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖集。
解1:利用算法求解,使得其满足三个条件
① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}
② 去掉F中多余的函数依赖
A.设AB→C为冗余的函数依赖,则去掉AB→C,得:F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}
计算(AB)F1+:设X(0)=AB
计算X(1):扫描F1中各个函数依赖,找到左部为AB或AB子集的函数依赖,因为找不到这样的函数依赖。故有X(1)=X(0)=AB,算法终止。
(AB)F1+= AB不包含C,故AB→C不是冗余的函数依赖,不能从F1中去掉。
B.设CG→B为冗余的函数依赖,则去掉CG→B,得:F2={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→A,CE→G}
计算(CG)F2+:设X(0)=CG
计算X(1):扫描F2中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。
计算X(2):扫描F2中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,得到一个CG→D函数依赖。故有X(2)=X(1)∪D=ACDG。
计算X(3):扫描F2中的各个函数依赖,找到左部为ACDG或ACDG子集的函数依赖,得到两个ACD→B和D→E函数依赖。故有X(3)=X(2)∪BE=ABCDEG,因为X(3)=U,算法终止。
(CG)F2+=ABCDEG包含B,故CG→B是冗余的函数依赖,从F2中去掉。
C.设CG→D为冗余的函数依赖,则去掉CG→D,得:F3={AB→C,D→E,D→G,C→A,BE→C,BC→D,ACD→B,CE→A,CE→G}
计算(CG)F3+:设X(0)=CG
计算X(1):扫描F3中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。
计算X(2):扫描F3中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,因为找不到这样的函数依赖。故有X(2)=X(1),算法终止。(CG)F3+=ACG。
(CG)F3+=ACG不包含D,故CG→D不是冗余的函数依赖,不能从F3中去掉。
D.设CE→A为冗余的函数依赖,则去掉CE→A,得:F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}
计算(CG)F4+:设X(0)=CE
计算X(1):扫描F4中的各个函数依赖,找到左部为CE或CE子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CEA=ACE。
计算X(2):扫描F4中的各个函数依赖,找到左部为ACE或ACE子集的函数依赖,得到一个CE→G函数依赖。故有X(2)=X(1)∪G=ACEG。
计算X(3):扫描F4中的各个函数依赖,找到左部为ACEG或ACEG子集的函数依赖,得到一个CG→D函数依赖。故有X(3)=X(2)∪D=ACDEG。
计算X(4):扫描F4中的各个函数依赖,找到左部为ACDEG或ACDEG子集的函数依赖,得到一个ACD→B函数依赖。故有X(4)=X(3)∪B=ABCDEG。因为X(4)=U,算法终止。
(CE)F4+=ABCDEG包含A,故CE→A是冗余的函数依赖,从F4中去掉。
③ 去掉F4中各函数依赖左边多余的属性(只检查左部不是单个属性的函数依赖)由于C→A,函数依赖ACD→B中的属性A是多余的,去掉A得CD→B。
故最小函数依赖集为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,CD→B,CE→G}
利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖。从题目来看,F中的任何一个函数依赖的右部仅含有一个属性:{A→B,B→A,B→C,A→C,C→A}
第二步去冗余的的顺序不同,产生结果也会不同,故最小函数依赖集合不止一个,还可发现另一个最小(极小)函数依赖集合为:{A→B,B→A,A→C,C→A}
给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
扩展资料:
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。
另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
参考资料来源:百度百科——函数
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)