python文件读取与写入

python文件读取与写入,第1张

open(filepath) :打开文件

open(filepath,'r') :打开方式,默认是读取

open(filepath).read() :读取文件中的内容

open(filepath).readline() :读取文件中一行的内容

open(filepath).readline()[1] :读取文件中的内容,返回值是列表。

open(filepath).close() :关闭文件

open(filepath).seek(0) :将光标回到首位

with open()函数,不用close()方法,默认自动关闭,所以需要制定一些规则.

文件内建函数和方法:

open() : 打开文件

read() :输入

readline() :输入一行

seek() :文件内移动

write() :输出

close() :关闭文件

有些数据是临时的,它们在应用程序运行时存储在内存中,然后丢弃。但是有些数据是持久的。它们存储在硬盘驱动器上供以后使用,而且它们通常是用户最关心的东西。对于程序员来说,编写代码读写文件是很常见的,但每种语言处理该任务的方式都不同。本文演示了如何使用 Python 处理文件数据。

在 Linux 上,你可能已经安装了 Python。如果没有,你可以通过发行版软件仓库安装它。例如,在 CentOS 或 RHEL 上:

在 macOS 上,你可以使用 MacPorts或Homebrew安装。在 Windows 上,你可以使用Chocolatey安装。

一旦安装了 Python,打开你最喜欢的文本编辑器,准备好写代码吧。

如果你需要向一个文件中写入数据,记住有三个步骤:

这与你在计算机上编码、编辑照片或执行其他 *** 作时使用的步骤完全相同。首先,打开要编辑的文档,然后进行编辑,最后关闭文档。

在 Python 中,过程是这样的:

这个例子中,第一行以 模式打开了一个文件,然后用变量 f 表示,我使用了 f 是因为它在 Python 代码中很常见,使用其他任意有效变量名也能正常工作。

在打开文件时,有不同的模式:

第二行表示向文件中写入数据,本例写入的是纯文本,但你可以写入任意类型的数据。

最后一行关闭了文件。

对于快速的文件交互,常用有一种简短的方法可以写入数据。它不会使文件保持打开状态,所以你不必记得调用 close 函数。相反,它使用 with 语法:

如果你或你的用户需要通过应用程序需要向文件中写入一些数据,然后你需要使用它们,那么你就需要读取文件了。与写入类似,逻辑一样:

同样的,这个逻辑反映了你一开始使用计算机就已知的内容。阅读文档,你可以打开、阅读,然后关闭。在计算机术语中,“打开”文件意味着将其加载到内存中。

实际上,一个文本文件内容肯定不止一行。例如,你需要读取一个配置文件、 游戏 存档或乐队下一首歌曲的歌词,正如你打开一本实体书时,你不可能立刻读完整本书,代码也只能解析已经加载到内存中的文件。因此,你可能需要遍历文件的内容。

示例的第一行指明使用 模式打开一个文件,然后文件交由变量 f 表示,但就像你写数据一样,变量名是任意的。 f 并没有什么特殊的,它只是单词 “file” 的最简表示,所以 Python 程序员会经常使用它。

在第二行,我们使用了 line ,另一个任意变量名,用来表示 f 的每一行。这告诉 Python 逐行迭代文件的内容,并将每一行的内容打印到输出中(在本例中为终端或IDLE)。

就像写入一样,使用 with 语法是一种更简短的方法读取数据。即不需要调用 close 方法,方便地快速交互。

使用 Python 有很多方法向文件写入数据,包括用 JSON、YAML、TOML等不同的格式写入。还有一个非常好的内置方法用于创建和维护SQLite数据库,以及许多库来处理不同的文件格式,包括图像、音频和视频等。

via: https://opensource.com/article/21/7/read-write-files-python

作者:Seth Kenlon选题:lujun9972译者:MjSeven校对:turbokernel

Python存200w数据到数据库需要474秒,因为正常的三万八千条数据仅需要9秒,以此类推出200万需要的时间。

【python存数据库速度】

1、需要从文本中读取三万条数据写入mysql数据库,文件中为用@分割的sql语句,但是在读取的过程中发现速度过慢,三万八千条数据需要220秒,

2、经测试发现,影响速度的主要原因是commit(),因为没过几秒提交一次即可,但是因为提交的字符长度有限制,所以要设置一个合理的时间读取。

3、更改后,写入三万八千条数据仅需要9秒


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9645184.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-30
下一篇 2023-04-30

发表评论

登录后才能评论

评论列表(0条)

保存