如何看待国产数据库SequoiaDB开源

如何看待国产数据库SequoiaDB开源,第1张

如何看待国产数据SequoiaDB开源

总的来说,我认为有几点吧

1)相比mongo还是有中文的齐全文档,作为中国的码农。。英文文档看得还是头疼啊。

2)应该说开源社区这边的支持还是比较快速的,在群里提问基本当天都会有人回答,然后在刚开始配置和对接程序的时候原厂的同学还在区里手把手教了我们的工程师。。还是很给力的

3)总体上说使用和迁移转换时候不会不上手,不过现在据说多了SQL的支持,还没有尝试过,听起来很厉害的样子,不过他们原生的 *** 作语句也还是很好理解的

如何看待yandex开源clickhouse这个列式文档数据

Yandex在2016年6月15日开源了一个数据分析的数据库,名字叫做ClickHouse,这对保守俄罗斯人来说是个特大事。更让人惊讶的是,这个列式存储数据库的跑分要超过很多流行的商业MPP数据库软件,例如Vertica。如果你没有听过Vertica,那你一定听过 Michael Stonebraker,2014年图灵奖的获得者,PostgreSQL和Ingres发明者(Sybase和SQL Server都是继承 Ingres而来的), Paradigm4和SciDB的创办者。Michael Stonebraker于2005年创办Vertica公司,后来该公司被HP收购,HP Vertica成为MPP列式存储商业数据库的高性能代表,Facebook就购买了Vertica数据用于用户行为分析。

简单的说,ClickHouse作为分析型数据库,有三大特点:一是跑分快, 二是功能多 ,三是文艺范

1 跑分快: ClickHouse跑分是Vertica的5倍快:

ClickHouse性能超过了市面上大部分的列式存储数据库,相比传统的数据ClickHouse要快100-1000X,ClickHouse还是有非常大的优势:

100Million 数据集:

ClickHouse比Vertica约快5倍,比Hive快279倍,比My SQL快801倍

1Billion 数据集:

ClickHouse比Vertica约快5倍,MySQL和Hive已经无法完成任务了

2 功能多:ClickHouse支持数据统计分析各种场景

- 支持类SQL查询,

- 支持繁多库函数(例如IP转化,URL分析等,预估计算/HyperLoglog等)

- 支持数组(Array)和嵌套数据结构(Nested Data Structure)

- 支持数据库异地复制部署

3文艺范:目前ClickHouse的限制很多,生来就是为小资服务的

- 目前只支持Ubuntu系统

- 不提供设计和架构文档,设计很神秘的样子,只有开源的C++源码

- 不理睬Hadoop生态,走自己的路

如何看待阿里巴巴宣布开放开源AliSQL数据库

其实有点类似,谷歌开放安卓系统给大家免费用,

某些技术别人要模仿不难,而且专利有效期也不长,

谷歌可能觉得还不如一下子公开了,大家一起弄,能迅速占领市场

如何看待黑客入侵数据库

内网。内鬼和外面的黑客一起合作搞的。内鬼的话就比较容易了。

如何看待美国研发的数据库TokuDB

测试过 TokuMX, 性能确实不错,但稳定性堪忧,mongodb 30 后引入了 wiredtiger engine,与 tokumx 差距缩小了

研究过 TokuMX 和 TokuDB 用的索引数据结构,很巧妙的设计,虽然树的深度加倍了,但插入时间确实大幅度降低了。

最后没有采用。

如何看待免费开源CRM

免费开源CRM基本上很难满足企业的实际业务需求,可以考虑一款支持用户个性化定制的CRM,百会的CRM就不错,它可以根据用户需求,在最短时间内定制出来并让用户看到效果。满意之后再付费,没有后顾之忧。定制工具简单,定制速度快。用户完全可以自己 *** 作去满足未来业务的变化。另外它基于SAAS模式的在线租用形势,可以为企业节省购买硬件、安装调试、后期升级的费用成本。定期的售后回访还可以解决不少使用中的问题。

如何看待Facebook已开源React Native

React Native项目成员Tom Ohino发表的React Native: Bringing modern web techniques to mobile(墙外地址)详细描述了React Native的设计理念。Ohino认为尽管Native开发成本更高,但现阶段Native仍然是必须的,因为Web的用户体验仍无法超越Native:

1 Native的原生控件有更好的体验;

2 Native有更好的手势识别;

3 Native有更合适的线程模型,尽管Web Worker可以解决一部分问题,但如图像解码、文本渲染仍无法多线程渲染,这影响了Web的流畅性。

Ohino没提到的还有Native能实现更丰富细腻的动画效果,归根结底是现阶段Native具有更好的人机交互体验。笔者认为这些例子是有说服力的,也是React Native出现的直接原因。

图3 - Ohino在F8分享了React Native(Keynote)

Learn once, write anywhere

“Learn once, write anywhere”同样出自Ohino的文章。因为不同Native平台上的用户体验是不同的,React Native不强求一份原生代码支持多个平台,所以不提“Write once, run anywhere”(Java),提出了“Learn once, write anywhere”。

图4 - “Learn once, write anywhere”

这张图是笔者根据理解画的一张示意图,自下而上依次是:

1 React:不同平台上编写基于React的代码,“Learn once, write anywhere”。

2 Virtual DOM:相对Browser环境下的DOM(文档对象模型)而言,Virtual DOM是DOM在内存中的一种轻量级表达方式(原话是ligheight representation of the document),可以通过不同的渲染引擎生成不同平台下的UI,JS和Native之间通过Bridge通信(React Native通信机制详解 « bang’s blog)。

3 Web/iOS/Android:已实现了Web和iOS平台,Android平台预计将于2015年10月实现(Blog | React)。

前文多处提到的React是Facebook 2013年开源的Web开发框架,笔者在翻阅其发布稿时,发现这么一段:

图5 - 摘自React发布稿(2013)

1 加亮文字显示2013年已经在开发React Native的原型,现在也算是厚积薄发了。

2 最近另一个比较火的项目是Flipboard/react-canvas · GitHub(详见 @rank),渲染层使用了Web Canvas来提升交互流畅性,这和上图第一个尝试类似。

React本身也是个庞大的话题不再展开,详见facebook/react Wiki · GitHub。

笔者认为“Write once, run anywhere”对提升效率仍然是必要的,并且和“Learn once, write anywhere”也没有冲突,我们内部正在改造已有的组件库和HybridAPI,让其适配(补齐)React Native的组件,从而写一份代码可以运行在iOS和Web上,待成熟后开源出来。

持续更新

二、规划

下图展示了业务和技术为React Native所做的改造:

图6 - 业务和技术改造图6 - 业务和技术改造

自下而上:

1 React Node:React支持服务端渲染,通常用于首屏服务端渲染;典型场景是多页列表,首屏服务端渲染翻页客户端渲染,避免首次请求页面时发起2次请求。

2 React Native基础环境:

21 Framework集成:尽管React Native放出了Integration with Existing App文档,集成到现有复杂App中仍然会遇到很多细节问题,比如集成到天猫iPad客户端就花了组里iOS同学2天的时间。

22 Neorking改造:主要是重新建立session,而session通常存放于 header cookie中,React Native提供的网络IO fetch和XML>

考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面回龙观IT培训将整理出一份包含十款工具的清单,从而有效压缩选择范畴。

OpenRefine

这是一款高人气数据分析工具,适用于各类与分析相关的任务。这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。在聚类完成后,分析即可开始。

Hadoop

大数据与Hadoop可谓密不可分。这套软件库兼框架能够利用简单的编程模型将大规模数据集分发于计算机集群当中。其尤为擅长处理大规模数据并使其可用于本地设备当中。作为Hadoop的开发方,Apache亦在不断强化这款工具以提升其实际效果。

Storm

同样来自Apache的Storm是另一款伟大的实时计算系统,能够极大强化无限数据流的处理效果。其亦可用于执行多种其它与大数据相关的任务,具体包括分布式RPC、持续处理、在线机器学习以及实时分析等等。使用Storm的另一大优势在于,其整合了大量其它技术,从而进一步降低大数据处理的复杂性。

Plotly

这是一款数据可视化工具,可兼容JaScript、MATLAB、Python以及R等语言。Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。

Rapidminer

作为另一款大数据处理必要工具,Rapidminer属于一套开源数据科学平台,且通过可视化编程机制发挥作用。其功能包括对模型进行修改、分析与创建,且能够快速将结果整合至业务流程当中。Rapidminer目前备受瞩目,且已经成为众多知名数据科学家心目中的可靠工具。

Cassandra

ApacheCassandra是另一款值得关注的工具,因为其能够有效且高效地对大规模数据加以管理。它属于一套可扩展NoSQL数据库,能够监控多座数据中心内的数据并已经在Netflix及eBay等知名企业当中效力。

HadoopMapReduce

这是一套软件框架,允许用户利用其编写出以可靠方式并发处理大规模数据的应用。MapReduce应用主要负责完成两项任务,即映射与规约,并由此提供多种数据处理结果。这款工具最初由谷歌公司开发完成。

Bokeh

这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供Python语言使用。

WolframAlpha

这是一套搜索引擎,旨在帮助用户搜索其需要的计算素材或者其它内容。举例来说,如果大家输入“Facebook”,即可获得与Facebook相关的HTML元素结构、输入解释、Web托管信息、网络统计、子域、Alexa预估以及网页信息等大量内容。

通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。

因为Redis的性能十分优越,可以支持每秒十几万此的读/写 *** 作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:

缓存

判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写 *** 作多么?数据大小?

我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意缓存穿透的问题。

缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行 *** 作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。

高速读写

常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。

高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。

这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。

所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。

我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。

Redis和MySQL的应用场景是不同的。

通常来说,没有说用Redis就不用MySQL的这种情况。

因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。

和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)

那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。

我们先来了解一下关系型数据库和非关系型数据库的区别吧。

1存储方式

关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

2存储结构

关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。

3存储规范

关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个 *** 作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

4存储扩展

这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中, *** 作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

5查询方式

关系型数据库通过结构化查询语言来 *** 作数据库(就是我们通常说的SQL)。SQL支持数据库CURD *** 作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元 *** 作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询 *** 作,而Nosql更简单更精确的数据访问模式。

6事务

关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。

7性能

关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。

8授权方式

大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。

所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。

查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。

而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。

即使Redis的读取效率再高,我们也没法用。

但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。

例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。

所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。

个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。

为什么?

因为redis是内存型数据库啊,是放在内存里的。

设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!

使用场景

Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。

例如facebook,使用Memcached来作为其会话缓存。

总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。

题主你错了,不是用redis代替MySQL,而是引入redis来优化。

BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。

如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。

我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过>

以上就是关于如何看待国产数据库SequoiaDB开源全部的内容,包括:如何看待国产数据库SequoiaDB开源、开源数据库有哪些、开源大数据分析工具等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9666238.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-30
下一篇 2023-04-30

发表评论

登录后才能评论

评论列表(0条)

保存