海景航拍怎么设置 海景航拍怎么设置参考

海景航拍怎么设置 海景航拍怎么设置参考,第1张

1、首先,我们要设置RAW录制模式,大多数无人机提供三种照片格式选项:JPEG,RAW和JPEG + RAW。阅读无人机的用户指南,并选择RAW选项作为结果文件。例如,在DJI无人机上,您可以进入相机设置>相机图标>图像格式。它允许您生成更好的,因为RAW文件包含相机传感器记录的所有图像数据。

2、因此,您可以在不降低图像标准的情况下编辑任何RAW文件。如果您使用RAW进行拍摄,请考虑相机显示的直方图是使用从原始RAW创建的JPEG文件生成的。

3、其次设置拍摄(或照片)模式,无人机支持各种照片模式。这些可能会根据制造商的不同而有所改变,因此请查看无人机的使用说明书。若是单身,点击拍摄按钮时,您可以拍摄单张图像。多个也称为连拍模式,它允许您在按住拍摄按钮的同时快速拍摄多张照片。自动包围曝光模式在不同曝光下拍摄多张相同构图的照片,您可以设置要拍摄的帧数和每次拍摄的曝光值(EV)之间的间隙停止次数。

4、它将帮助您拍摄HDR图像,您稍后需要自己进行后期处理和合并。高动态范围(HDR)与AEB模式类似,此模式需要几张包围曝光的照片。但与AEB模式不同,它会自动拉出每个帧的最佳部分并合并它们以生成最终的HDR图像。定时拍摄模式允许您自动以设定的间隔拍摄图像。

5、制作延时视频是一个有趣的选择。全景模式可帮助您捕捉全景拍摄,转到照片模式菜单,然后选择您要使用的菜单。大多数无人机允许您在两种曝光模式之间进行选择:自动和手动模式。它们之间的区别在于,在自动模式下,相机会为您决定一切,而在手动模式中,您可以更改几乎所有设置。

随着经济建设迅猛发展,各地区的地貌发生巨大变迁,现有的航空遥感技术手段已无法适应经济发展的需要。以无人驾驶飞机为空中遥感平台的技术,能够较好地满足现阶段我国对航空遥感业务的需求,在考古、国土整治监控、基础设施建设、居民小区建设、环保和生态建设等方面有巨大的作用。

实景三维中国建设是测绘地理信息的重大变革。它一方面将给产业带来新的市场机会,另一方面作为新型基础测绘的标准化产品,将推动和促进地理信息产业的技术创新与应用服务升级。业界人士建议,实景三维中国建设涉及面广、覆盖面全、任务量大、新 探索 多,自主可控、自动化、智能化技术体系的建设是必然要解决的技术难题。此外,政府、科研院校、事业单位与企业等要形成合力,共同为实景三维中国建设提供助力。

在了解无人机航拍怎么进行3D建模前,我们先来了解下无人机航拍这项新技术及无人机航拍有什么特色亮点呢?

1

无人机航拍介绍

无人机航拍摄影是以无人驾驶飞机作为空中平台,以机载遥感设备,如高分辨率CCD数码相机、轻型光学相机、红外扫描仪,激光扫描仪、磁测仪等获取信息,用计算机对图像信息进行处理,并按照一定精度要求制作成图像。

2

航拍特点

无人机航拍影像具有高清晰、大比例尺、小面积、高现势性的优点。特别适合获取带状地区航拍影像(公路、铁路、河流、水库、海岸线等)。且无人驾驶飞机为航拍摄影提供了 *** 作方便,易于转场的遥感平台。起飞降落受场地限制较小,在 *** 场、公路或其它较开阔的地面均可起降,其稳定性、安全性好,转场等非常容易。

3

无人机航拍航线规划

1 规划航线: 根据项目任务要求进行航线规划,可以通过导入kml文件方式或手动进行规划。

2飞行高度: 根据项目精度要求合理规划飞行高度,起飞前进行场地的踏勘,了解附近地势情况后设置合适的飞行高度。

3飞行设置:

①设置航测的重叠,一般航向和旁向重叠率是70%和70%(最好不要低于70%)。

②设置好俯仰角,正射影像图一般为-90 ,拍摄3D立体时一般为-45 。

③设置好返航高度,确保返航时不会碰撞到障碍物。

4开始飞行: 检查任务没有问题后,点击右上角的飞机按钮,程序开始上传任务和自检:无人机连接情况、电池电量、GPS定位情况、摄像机状态、返航点位置、无人机是否靠近测区、遥控器档位设置等,通过后就可以点击飞行了。

5建模:

大疆智图是一款以二维正射影像与三维模型重建为主,同时提供二维多光谱重建、激光雷达点云处理、精细化巡检等功能的PC应用程序。一站式的解决方案帮助行业用户全面提升内外业效率,重点针对测绘、电力、应急、建筑、交通、农业等垂直领域提供一套完整的重建模型解决方案。

产品亮点

1 处理效率高:单机重建处理速度是其他主流软件3-5倍以上,集群重建更可成倍提升处理效率;

2 重建效果好:模型效果好,针对贴近摄影采集的数据可还原细小结构;重建精度高,免像控精度可达厘米级;

3 处理规模大:主机64G内存,单机重建可处理25万张影像,集群重建可处理40万张影像;

4 支持集群重建:二、三维重建均支持将局域网内所有 PC 组网并行集群处理,成倍提升重建效率;

5 易用性高: *** 作简单,无需复杂参数设置,上手门槛低。

下面,我们简单的了解下大疆智图的具体功能

01

航点飞行

在地图上设定一系列航点即可自动生成航线,支持为每个航点单独设置丰富的航点动作,同时可调整航点的飞行高度、飞行速度、飞行航向、云台俯仰角度等参数。对于精细化飞行任务,还可在已建好的二维正射地图或三维模型上进行航点规划,规划效果更直观。

02

建图航拍

选定目标区域可自动生成航线。提供地图打点、KML 文件导入、飞行器打点等3 种方式添加边界点,在无网络情况下也可正常作业。规划过程中,界面会显示预计飞行时间、预计拍照数及面积等重要信息。

03

倾斜摄影

选定目标区域可自动规划出5组航线:1组正射航线和4组不同朝向的倾斜航线。全面的视角帮助构建更高精度的实景三维模型,同时支持设置倾斜云台角度等参数以满足不同的场景需求。

04

带状航线

专为公路、河流、管道等带状区域设计,可自动切割大面积带状测区,分段规划航线。用户可自由调整带状宽度,合理规划航线,提升作业效率。

05

精细化巡检1

基于本地3D模型或点云(或第三方点云)结果选择拍摄目标,自动生成拍摄航点及航线。同时可显示航点对应模拟相机图传画面,航点选择更精准,航线规划更合理,实现巡检作业流程自动化。

06

实时二维重建

基于同步定位、地图构建和影像正射纠正算法,在飞行过程中实时生成二维正射影像,实现边飞边出图。在作业现场就能及时发现问题,灵活采取更具针对性的应对措施。

07

实时三维重建2

基于 DJI 先进的实时重建算法,将无人机采集的数据可视化,实时生成高精度、高质量三维模型,满足事故现场、工程监测、电力巡线等场景的展示与精确测量需求。

08

点云数据处理

大疆智图支持禅思 L1 点云数据处理,包含POS解算、点云与可见光数据融合、标准格式点云输出、作业报告输出,实现点云数据处理一键式 *** 作。

注释:

1 仅以下机型支持精细化巡检任务航线导入使用:

(1)精灵Phantom 4 RTK(不带屏遥控器)

(2)经纬 Matrice 300 RTK + H20系列负载

(3)御 2 行业进阶版

2 仅精灵 Phantom 4 RTK(带屏遥控器)、精灵 Phantom 4 Pro V20+ 和 精灵 Phantom 4 Pro V20 支持此功能。

再下面大疆智图三维实景建模步骤来啦!

简单三步即可完成

1、点击新建任务——可见光选项——任务名称命名

2、添加相片——空中三角测量

3、点击二维或者三维开启重建

关注“万航星空”微信公众号,看更多精彩案例和解决方案,我们在下期等你!

遥感是卫星与飞机航拍图区别

(一) 定义

1、 遥感:卫星影像图是以卫星作为遥感平台,通过卫星上装载的对地观测遥感仪器对地球表面进行观测所获得的遥感图像。

2、 飞机航拍:飞机航拍图是以飞机作为遥感平台,在近地点的稳定高度拍摄地面各种目标所获得的图像。

(二) 成图原理、方式

1、 遥感:以卫星为航天遥感平台(一般大于80km),以扫描方式获取图像,有很多波段,最大可达350多个以上,彩色图像基本上都是波段组合和融合而成,色彩不太真实。

2、 飞机航拍:以飞机为航空遥感平台(小于80km),以光学摄影进行的遥感,一般是黑白,真彩和彩红外摄影,一般最多4个波段,颜色比较真实。

(三) 分辨率

1、 遥感:比例尺小,分辨率低,清晰度相对较低,一般分辨率可从05米—1000米之间;

2、 飞机航拍:比例尺较大,分辨率较高,清晰度高,一般分辨率可从004米—1米之间。

(四) 图像变形

1、 遥感:摄影高度较高,因此建筑的投影差方向和大小基本上都一样,变形小。

2、 飞机航拍:摄影高度较低,因此建筑的投影差方向和大小每个地方都不一样,变形大。

(五) 成图面积

1、 遥感:成图面积大,含信息丰富,拍摄面域广,获取速度快,可做全球动态监测。

2、 飞机航拍:成图面积小,离地面距离相对要近得多, 观察格外清晰、准确, 图像稳定, 精度高,避免了常规调查的盲目性和不必要的无效工作, 极大的节约了时间和精力, 节约了财力和物力。

扩展资料

遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。

任何物体都有不同的电磁波反射或辐射特征。航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来,供识别和判断。把遥感器放在高空气球、飞机等航空器上进行遥感,称为航空遥感。

参考资料来源:百度百科-遥感技术

参考资料来源:百度百科-航拍

从航拍图上计算长度尺寸比较困难,需要一定的专业技能和工具。一般来说,计算长度尺寸的方法如下:

选取一条基准线。基准线应该在图像中比较长,尽可能贴近要测量的对象,且长度需要已知。可以根据周围的环境,比如公路、建筑物等选取一条比较长的基准线。

对基准线进行校准。从地图软件或其他可靠来源中获取基准线实际长度(例如使用百度地图)。然后在图像中测量基准线的像素长度,把像素长度和实际长度进行比较,计算出一个比率。

测量其他线段的像素长度。使用航拍图和比例尺计算其他线段的像素长度,并用基准线的比率将其转换为实际线段长度。

需要注意的是,在计算长度尺寸时,要尽可能选取贴近正面的图像来测量房屋长度,而且如果相邻房屋之间有遮挡或者低于某一高度(比如你提到的避雨道),也应该对其进行修正。另外,这种测量方法具有一定的误差,可能不够准确,需要结合周围环境和实地测量等手段,尽可能减小误差。

本文研究了无人机(UAV)遥感图像拼接过程中重叠区域的不匹配问题。为了解决这个问题,首先通过将双重匹配与随机抽样共识(RANSAC)方法相结合来过滤特征点。其次,为了保证每幅图像与全景照片的投影关系的一致性,我们提出了一种局部拼接的方法。为了避免随着图像数量的增加透视变化累积而导致图像倾斜的错误,我们建立了图像旋转坐标系,并将图像之间的关系限制为平移和旋转。用坐标原点的相对位置来表示平移距离,通过迭代求解最优旋转角度。最后,图像的重叠部分通过线性加权融合。通过实验结果验证,本文提出的方法在大量图像的情况下能够保证更快的处理速度和更高的处理精度,从而达到理想的拼接效果。

近年来,随着计算机视觉的不断进步,图像拼接技术在海洋和矿产勘探、遥感勘探、医学成像、效果生成、虚拟现实等方面得到了广泛的应用。许多航拍遥感图像可以通过配备摄像头的无人机在地面拍摄得到。通常,由于无人机飞行高度、相机焦距等因素,单幅图像存在信息量少、全局分辨率低等问题。因此,要获得广角高分辨率的照片,就需要研究全景图像拼接技术。Brown 在 2003 年引入了著名的 AutoSitich 算法,很快就被用于商业产品,如 Photoshop。但是,该算法假定图像的重叠区域没有深度变化。2013 年,萨拉戈萨 J 等人。将图像拆分为密集的网格,并为每个网格使用单个更改,称为网格变形。该方法在一定程度上解决了图像变形、尺寸缩放、重定向等问题。

图像拼接技术一般分为图像几何校正、图像预处理、图像对齐、图像融合四个步骤。由于相机镜头的畸变,需要对无人机的图像进行校正,使得到的图像满足个别地图的投影关系。图像预处理是几乎所有图像处理技术的重要组成部分,包括去噪、灰度变化等。这个过程可以降低匹配难度,提高匹配精度。然而,对于无人机遥感图像的拼接,图像匹配和图像融合是成功的关键。

图像匹配技术是图像拼接的基础。1975年米尔格拉姆提出了计算机拼接技术。于是,在重叠区域寻找最优接缝线就成为一个重要的研究方向。同年,Kuslin 提出了一种相位相关方法,通过傅里叶变化将图像转换到频域,并利用功率谱计算平移。1987 年,Reddy 提出了一种扩展的相位相关方法,该方法可以计算图像的平移和旋转关系并解决图像缩放问题。图像拼接的另一个分支是基于图像特征。1988年Harris提出经典的Harris点检测算法,它使用特定的旋转不变性哈里斯点进行特征匹配。2004 年,Lowe 提出了一种完美的尺度不变特征变换算法(SIFT),对平移、旋转、尺度缩放、不均匀光照等图像领域应用最广泛的技术具有良好的适应性。C Aguerrebere 根据输入图像的 SNR 条件给出的问题难度级别显示不同的行为区域。Wu通过建立模型,将深度学习和进化算法应用于遥感图像的拼接,实现概率意义上的全局优化。

图像融合技术是遥感图像拼接技术中的另一项核心技术,分为像素级融合、特征级融合、决策级融合。像素级融合仍然是现阶段最常用的图像融合方法之一。

对于无人机的遥感图像,存在图像数量多、光照条件多变等问题。每次拼接过程中的小错误都难以避免。随着图像数量的增加,误差不断累积,图像拼接后期会出现图像失真和重影。S Bang 创建高质量全景图,过滤掉视频的模糊帧,选择关键帧,并校正相机镜头失真。Zhang 提出了基于 STIF 的 GA-SIFT 并给出了一种自适应阈值方法来解决计算量大和拼接时间长的问题。李明基于动态规划解决无人机侧视问题寻找最佳接缝线。然而,当图像数量逐渐增加时,现有的拼接算法存在误差累积。

也有一些基于网格变形的图像拼接算法,但计算量太大。在本文中,图像被匹配两次以过滤特征点以提高准确度。拼接问题对应于通过坐标系转换的旋转角度解,应用高斯-牛顿迭代计算最优旋转角度。此外,我们练习局部匹配方法以减少错误并使用加权融合来实现过度平滑。

SIFT特征点不仅在空间尺度和旋转上保持不变,而且在光照和视角变化的条件下,还具有优异的抗干扰能力和良好的稳定性。为了实现空间尺度的不变性,SIFT特征点可以根据物体远看小而模糊,反之大而清晰的特点,建立高斯金字塔模型。差分金字塔 (DoG) 是通过计算金字塔中相邻两层图像之间的差异来获得的。使用函数拟合在 DOG 空间中测试极值。通过对确定场中基于SIFT特征点的梯度信息进行统计,选择加权幅度最大的梯度方向作为主梯度方向。通过将特征点与其主梯度方向相关联,可以解决图像特征点的旋转不变性问题。最后,利用特征点周围像素的信息建立一个128维的向量作为特征点的描述符。

提取特征点后,需要对两幅图像的特征点进行匹配。通过特征点成对匹配,可以计算出两个特征点对应的描述符之间的欧氏距离,选择欧氏距离最小的点作为匹配点对。为了减少不匹配的发生率, 被用作正确匹配的阈值。具有大于 的描述符欧几里得距离的匹配点对被消除。

RANSAC 是特征点匹配中最常用的方法之一。它首先从匹配结果中随机选择四对特征点并计算单应矩阵。其次,根据上一步得到的单应矩阵,计算第一幅图像在第二幅图像中的重投影坐标,并计算该坐标与第二幅图像中匹配点对坐标的距离。通过设置距离阈值记录所有匹配点对中正确匹配特征点对的个数。重复上面的过程,最终留下与最多点对数的正确匹配。

高斯-牛顿迭代是求解非线性最小二乘优化问题的算法之一,可以描述为:

我们选择一个初始值,然后不断更新当前优化变量以减小目标函数值。高斯-牛顿迭代的主要思想是对函数 进行一阶泰勒展开,计算 及其雅可比矩阵 对应的函数值。使用 和 计算 的增量,直到 足够小。

加权平均法是图像融合中简单有效的方法之一。第一幅图像和第二幅图像重叠区域的像素值由两幅图像像素的加权求和得到,表示为:

其中:越接近 img1, 的值越大。 的值从1逐渐变为0,重叠区域从第一幅图像逐渐过渡到第二幅图像,从而实现画面的平滑过渡。照片的加权平均融合因其直观的简单性和快速的运行速度而被广泛使用和图像拼接。

对于两幅图像的拼接,由于无人机的遥感相机通常安装在一个稳定的平台上,通过选择合适的坐标系,将图像对齐问题转化为单幅图像旋转问题,如图1所示。

此外,大多数具有相关高光频的常用相机通常在连续帧之间具有较大的重叠区域。因此,在图像拼接过程中,第 幅图像在全局位置上的投影关系,不仅受第 幅图像的影响,还与 图像相关。为了保证图像变形的一致性,首先将 张图像拼接在一起,然后将结果整合到整幅图像中。大量的实验测试证明,当i设置为3时效果最佳。整个过程如图图2。

图像中的特征点有很多种,本文使用最常见的SIFT特征点。我们提取并匹配两张输入图像的特征点,结果如下所示。

特征点的匹配精度直接影响旋转角度的计算,因此使用前必须对特征点对进行过滤。鉴于过滤特征点的方法很多,本文先将左图与右图进行匹配,再将右图与左图进行匹配。两次相同结果配对的匹配点将被保留。在此基础上,使用RANSAC方法对结果进行优化,成功匹配了上图中的121个特征点。

从无人机拍摄的两张照片之间通常存在旋转和平移。为了独立优化旋转角度,我们首先建立如图 5所示的坐标系。

以图像匹配成功的特征点坐标值的平均值作为该坐标的原点,坐标轴与像素坐标系的两个坐标轴平行。根据公式(3),特征点从图像坐标系转换为图像旋转坐标系:

其中 为滤波后的特征对的总数, 为特征点在原始图像坐标系中的坐标值,并且 是新的值。

在计算图像的旋转角度之前,我们首先需要分析图像的缩放比例。由飞行高度引起的尺寸变化将在轴上具有相同的缩放比例。因此,根据所有特征点与图像旋转坐标系原点的欧氏距离比,可以计算出两幅图像之间的缩放比例,对图像进行缩放和改变。

图像缩放后,计算图像旋转的角度。高斯牛顿迭代的方式计算旋转角度的最优解。首先设置目标函数:

通过迭代选择最优的 使得:

使用误差函数 的泰勒展开进行迭代。

其中

根据

我们可以发现增量值 每次迭代。最终,当我们计算出的 满足条件时,停止迭代过程。可以使用最佳旋转角度和旋转中心来求解图像的变换矩阵。

由于拍摄图像时光线不均匀,连续两张图像之间可能存在一些颜色差异。此外,图像旋转不可避免地存在小误差,因此我们练习线性加权融合以消除两幅图像之间的拼接线和色度变化。图像的重叠是按距离加权的,这样拼接结果自然是从img1到img2过度了。

我们利用OpenCV的功能从遥感图像中提取SIFT特征点并进行匹配。从Stitch拼接功能、基于透视变化的图像拼接结果以及本文的拼接速度的对比可以看出,本文采用的方法具有一定的优越性。

从表1数据可以看出,在拼接少量图像时,三种算法的拼接结果相似,没有出现明显的拼接误差。但是,Stitcher 算法比其他两种拼接方法花费的时间要多得多。

图 11很明显,随着图像数量的增加,基于透视变换的图像拼接算法出现了严重的失配。然而,本文采用的方法取得了比较满意的结果,因为在无人机拍摄的图像中,地面上的所有特征都可以近似地视为在同一平面上。根据透视变换,无人机的远近抖动会引入图像拼接导致错误。图像数量的不断增加会导致错误的积累,从而导致严重的失配。另外,这使得程序中断,从而无法完成所有60幅图像的拼接。假设同一平面上的仿射变化会更符合无人机遥感图像的实际情况。最后,可以通过线性加权融合来解决误差问题,以提高拼接效果。考虑到stitch算法耗时过长,本文不会对两者进行比较。

在上面的图 12 中,使用 100 张图像来测试本文中的方法。图像的仿射变换是通过计算围绕图像特征点中心的旋转角度来进行的。变换后的图像采用线性加权融合后,可以得到大量图像数据处理后的结果。拼接自然,符合人类视觉体验。

我们在网络上跑了一组数据,结果如下。

鉴于以上实验结果,该方法具有一定的抗干扰能力,可以高速运行。与高度集成的Stitcher和基于透视变换的图像拼接结果相比,我们可以发现,基于透视变化的图像拼接结果随着图像数量的增加而逐渐变差。然而,尽管拼接效果很好,但 Stitcher 需要更长的处理时间。

在本文中,我们研究了无人机遥感图像的拼接技术,主要贡献可以总结如下:

通过实验结果可以看出,本文提出的方法比现有方法具有更好的实时性,对于相机平面与成像平面平行的情况具有更好的拼接效果。

以上就是关于海景航拍怎么设置 海景航拍怎么设置参考全部的内容,包括:海景航拍怎么设置 海景航拍怎么设置参考、无人机航拍摄影+三维实景建模、遥感和航拍图像有区别吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9704222.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存