了存储、查询和修改空间关系的能力。本文中 ‘PostgreSQL’ 指代基本的关系数据库功能,而 ‘PostGIS’ 指代扩展的空间 *** 作特性。
客户端-服务器构架
PostgreSQL 同众多数据库产品一样,采用客户端-服务器构架。客户端向服务器发出请求并得到响应。这种机制同浏览器从网络服务器获取网页类似。在 PostgreSQL 中,请求以 SQL 语言发出,而响应多为从数据库提取的表单。
客户端与服务器可以部署在同一台设备上,即 PostgreSQL 可以在单一的计算机上使用。借由系统内部的 ‘loopback’ 通信机制,数据库系统可以进行私密通讯。除非专门配置,外界是不能访问这些信息的。
本位介绍三种客户端:命令行, Quantum GIS , pgAdmin 图形化数据库客户端。
创造具有空间信息处理能力的数据库
命令行客户端在终端模拟器(Terminal Emulator)中运行。在 Applications 菜单的 Accessories 中打开一个终端模拟器,将显示一个 Unix 风格的命令行界面。输入:
psql -V
回车确认,将显示 PostgreSQL 版本号。
一个 PostgreSQL 服务器中,可以将不同的任务组织到不同的数据库。每个数据库独立运作,拥有专门的表单、显示、用户等。访问 PostgreSQL 数据库时将指定一个数据库。
服务器上数据库列表通过以下命令查询:
psql -l
输出将罗列 Live 上配置的几个数据库。这里演示新建一个。
PostgreSQL 使用 createdb 工具创建数据库。这里建立的数据库应带有 PostGIS 的扩展功能,因此需要指定相应的模板。这里将新建数据库称为 demo 。命令为:
createdb-Ttemplate_postgisdemo
现在执行 psql-l 应当可以看到 demo 数据库。
也可以使用 SQL 语言创建 PostGIS 数据库。首先使用 dropdb 命令删除之前创建的数据库,然后使用 psql 命令开启 SQL 命令解析器:
dropdbdemopsql-dpostgres
这样就连接到了一个通用的系统数据库 postgres 。输入 SQL 命令建立新数据库:
postgres=# CREATE DATABASE demo TEMPLATE=template_postgis;
现在可以转换连接到新建的数据库。若重新连接时可以使用 psql-ddemo 命令。但在 psql 系统内部也可以使用以下命令:
postgres=# \c demo
一个信息页面将显示当前已连接 demo 数据库。输入 \dt 列出当前数据库内的表单,输出如下:
demo=# \dtListofrelationsSchema|Name|Type|Owner--------+------------------+-------+-------public|geometry_columns|table|userpublic|spatial_ref_sys|table|user(2rows)
这两个表格是 PostGIS 默认的。其中 spatial_ref_sys 存储着合法的空间坐标系统。利用 SQL 查询查看:
demo=# SELECT srid,auth_name,proj4text FROM spatial_ref_sys LIMIT 10;srid|auth_name|proj4text------+-----------+--------------------------------------3819|EPSG|+proj=longlat+ellps=bessel+towgs3821|EPSG|+proj=longlat+ellps=aust_SA+no_d3824|EPSG|+proj=longlat+ellps=GRS80+towgs83889|EPSG|+proj=longlat+ellps=GRS80+towgs83906|EPSG|+proj=longlat+ellps=bessel+no_de4001|EPSG|+proj=longlat+ellps=airy+no_defs4002|EPSG|+proj=longlat+a=6377340189+b=634003|EPSG|+proj=longlat+ellps=aust_SA+no_d4004|EPSG|+proj=longlat+ellps=bessel+no_de4005|EPSG|+proj=longlat+a=6377492018+b=63(10rows)
以上显示确认了该数据库已经建立空间 *** 作功能。数据库中的 geometry_columns 用于记录那些表格是有空间信息的。
手工建立空间数据表格
空间数据库已经建立,现在可以建立具有空间信息的表格。
首先建立一个常规的表格存储有关城市(cities)的信息。这个表格有两栏,一个是 ID 编号,一个是城市名:
demo=# CREATE TABLE cities ( id int4, name varchar(50) );
现在添加一个空间栏用于存储城市的位置。习惯上这个栏目叫做 the_geom 。它记录了数据为什么类型(点、线、面)、有几维(这里是二维)以及空间坐标系统。此处使用 EPSG:4326 坐标系统:
demo=# SELECT AddGeometryColumn ('cities', 'the_geom', 4326, 'POINT', 2);
完成后,查询 cities 表单应当显示这个新栏目。同时页面将显示当前表达没有记录(0 rows)。
demo=# SELECT from cities;id|name|the_geom----+------+----------(0rows)
为添加记录,需要使用 SQL 命令。对于空间栏,使用 PostGIS 的 ST_GeomFromText 可以将文本转化为坐标与参考系号的记录:
demo=# INSERT INTO cities (id, the_geom, name) VALUES (1,ST_GeomFromText('POINT(-01257 51508)',4326),'London, England');demo=# INSERT INTO cities (id, the_geom, name) VALUES (2,ST_GeomFromText('POINT(-81233 42983)',4326),'London, Ontario');demo=# INSERT INTO cities (id, the_geom, name) VALUES (3,ST_GeomFromText('POINT(2791162491 -3301529)',4326),'East London,SA');
当然,这样的输入方式难以 *** 作。其它方式可以更快的输入数据。就目前来说,表格内已经有了一些城市数据,可以先进行查询等 *** 作。
简单查询
标准的 SQL *** 作都可以用于 PostGIS 表单:
demo=# SELECT FROM cities;id|name|the_geom----+-----------------+----------------------------------------------------1|London,England|0101000020E6100000BBB88D06F016C0BF1B2FDD2406C149402|London,Ontario|0101000020E6100000F4FDD478E94E54C0E7FBA9F1D27D45403|EastLondon,SA|0101000020E610000040AB064060E93B4059FAD005F58140C0(3rows)
这里的坐标是无法阅读的 16 进制格式。要以 WKT 文本显示,使用 ST_AsText(the_geom) 或 ST_AsEwkt(the_geom) 函数。也可以使用 ST_X(the_geom) 和 ST_Y(the_geom) 显示一个维度的坐标:
demo=# SELECT id, ST_AsText(the_geom), ST_AsEwkt(the_geom), ST_X(the_geom), ST_Y(the_geom) FROM cities;id|st_astext|st_asewkt|st_x|st_y----+------------------------------+----------------------------------------+-------------+-----------1|POINT(-0125751508)|SRID=4326;POINT(-0125751508)|-01257|515082|POINT(-8123342983)|SRID=4326;POINT(-8123342983)|-81233|429833|POINT(2791162491-3301529)|SRID=4326;POINT(2791162491-3301529)|2791162491|-3301529(3rows)
空间查询:
PostGIS 为 PostgreSQL 扩展了许多空间 *** 作功能。以上已经涉及了转换空间坐标格式的 ST_GeomFromText 。多数空间 *** 作以 ST(spatial type)开头,在 PostGIS 文档相应章节有罗列。这里回答一个具体的问题:以米为单位并假设地球是完美椭球,上面三个城市相互的距离是多少?
demo=# SELECT p1name,p2name,ST_Distance_Sphere(p1the_geom,p2the_geom) FROM cities AS p1, cities AS p2 WHERE p1id > p2id;name|name|st_distance_sphere-----------------+-----------------+--------------------London,Ontario|London,England|587576685191657EastLondon,SA|London,England|978964696784908EastLondon,SA|London,Ontario|138921609525778(3rows)
输出显示了距离数据。注意 ‘WHERE’ 部分防止了输出城市到自身的距离(0)或者两个城市不同排列的距离数据(London, England 到 London, Ontario 和 London, Ontario 到 London, England 的距离是一样的)。尝试取消 ‘WHERE’ 并查看结果。
这里采取不同的椭球参数(椭球体名、半主轴长、扁率)计算:
demo=# SELECT p1name,p2name,ST_Distance_Spheroid(p1the_geom,p2the_geom,'SPHEROID["GRS_1980",6378137,298257222]')FROMcitiesASp1,citiesASp2WHEREp1id>p2id;name|name|st_distance_spheroid-----------------+-----------------+----------------------London,Ontario|London,England|589241363776489EastLondon,SA|London,England|975684265711931EastLondon,SA|London,Ontario|138841494140698(3rows)
制图
以 PostGIS 数据制图需要相应的客户端支持。包括 Quantum GIS、gvSIG、uDig 在内的多种客户端均可以。以下使用 Quantum GIS:
从 Desktop GIS 菜单启动 Quantum GIS 并在其 layer 菜单选择 AddPostGISlayers 。连接到 Natural Earth PostGIS 数据库的参数在 Connections 下拉菜单中有。这里可以定义和储存其它的配置。点击 Edit 可以查看具体参数。点击 Connect 连接:

系统将显示所有空间信息表供选择:

选择 lakes 湖泊表单并点击底部的 Add 添加。顶部的 Load 可以载入新的数据库连接配置。数据将被导入:

界面上显示出湖泊的分布。QGIS 并不理解湖泊一词的含义,也许不会自动使用蓝色。请查看其手册了解如何设置。这里缩放到加拿大一处著名的湖泊群。
自动创建空间数据表单
OSGeo Live 的多数桌面 GIS 系统都可以将 shp 等文件导入数据库。这里依然使用 QGIS 演示。
QGIS 中导入 shp 可以使用 PostGIS Manager 插件。在 Plugins 菜单选择 FetchPlugins 导入最新的官方插件列表(需要网络连接)。找到 PostGISManager 点击 Installplugin 安装。

完成后,在 Plugin 菜单点击 PostGIS Manager 启动。也可以点击工具栏上大象与地球的图标。
该插件将连接 Natural Earth 数据库。若提示输入密码,留空即可。在开启的界面中,选择表单可以显示相应的信息。预览(Preview)选项卡可以显示地图预览。这里选择了 populated places 图层并缩放到一个小岛:

接下来使用 PostGIS Manager 将 shp 导入数据库。这里使用 R 统计扩展包含的 North Carolina sudden infant death syndrome (SIDS) 数据:
在 Data 菜单选择 Loaddatafromshapefile 选项。点击 选中 R maptools 中的 sidsshp 。
实际上,HBase是一个列族数据库,而不是真正的列式数据库。
因为允许存放非结构化数据,所以HBase的数据类型只有简单的字符串类型,如果需要细分类型,需要用户自己处理。
HBase的四维模型中每个元素:
(1)行键(Row Key):最大长度为64KB的任意字符串。与关系型数据库一样,行键是行的唯一标志。
(2)列族(Column Family):这是理解列族数据库的关键概念。将数据行中的字段按照某种要求分成数个小组,每个小组包含若干个字段,每个小组就是列族。列族需要预先定义,并且不能随意修改。每行具有相同的列族,但不要求每个列族都存储数据。
(3)列限定符(Qualifier):每个列族包含多个字段,限定符用于区分不同的字段。列限定符不需要预先定义,因此每行可以有不同数量的列限定符,也可以认为列限定符就是字段。
(4)单元(Cell):存储数据的最小单元。单元中存储的是未经解释的字符串,需要通过行键、列族、列限定符、时间戳进行定位。
(5)版本(Version):这是HBase与其他数据库的不同之处。版本是一个64位整型数,可以由系统自动生成,也可以由用户自定义。引入版本后,存储在单元中的值不再只有一个,可以通过不同的时间戳(Timestamp)在同一单元中存入多个版本。
维:是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。
维的层次:人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。
维的成员:维的一个取值。是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)
维实际可以翻译成坐标轴,成员就是坐标轴上的一个点,每一个坐标点都对应了若干条记录。
当你用若干个坐标来对成千上万的数据进行分割后,就可以得到任意坐标组合下的一个交集。
因为你构件的数据集是多维的,所以数据集也叫“立方”。
数组维数是指在多维数组之中采用一系列有序的整数来标注。
整数列表之中整数始终相同的个数。在数据库中,数组维数与表中属性数量有关,属性越多,数组维数越大。属性,共同的性质和特点。
计算机中的字段属性、资源特性和那些读取与修改的权限。例如:文件属性、用户的属性。按数组维数分类可以分为:一维数组、二维数组、多维数组。
扩展资料:
数组维数分类:
1、一维数组
一维(或单维)数组是一种线性数组,其中元素的存取是以行或列索引的单一下标表示。
2、二维数组
在实际问题中有很多量是二维的或多维的, 因此C语言允许构造多维数组。多维数组元素有多个下标, 以标识它在数组中的位置,所以也称为多下标变量。
3、多维数组
普通数组采用一个整数来作下标。多维数组(高维数组)的概念特别是在数值计算和图形应用方面非常有用。
参考资料来源:百度百科-数组维数
数据库就是指数据库管理系统:主要指信息时代专门存储管理信息数据的软件系统。分类可分关系型数据库、网状数据库和层次型数据库什么的。但是大家广泛接触的还是关系型数据库(信息数据主要可以二维表格模式展示的数据库)如:oracle、sqlserver、db2、access、foxpro等吧。mysql是个小型关系型数据库。
以上就是关于postgresql 和postgis区别是什么全部的内容,包括:postgresql 和postgis区别是什么、hbase列式数据库四维坐标是什么、什么是维数据库中的知识等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)