需求分析:了解用户需求,确定数据库的功能和所包含的数据。
概念设计:根据需求分析结果,设计数据库的概念模型,即确定数据库中需要的实体、属性和关系等。
逻辑设计:将概念模型转换为关系模型,确定数据库中的表、字段及其之间的关系。
物理设计:根据逻辑设计结果,建立数据库的物理结构,包括表空间、索引等。
实施和维护:完成数据库的建立和维护,包括数据的导入、备份和恢复等。
为每张表定义一个组件,这个组件一般是指表中的每个字段或属性,即每个组件代表表中的一个数据元素。在定义组件时,需要注意以下几个技巧:
命名规范:对于每个组件的命名需要遵循一定的规范,如使用有意义的英文单词或缩写等,以便于理解和查询。
数据类型选择:根据数据元素的类型和范围,选择合适的数据类型,以保证数据的正确性和有效性。
约束条件设置:根据数据元素的特性和业务规则,设置相应的约束条件,如主键、外键、唯一性约束、非空约束等,以保证数据的完整性和一致性。
数据元素的关系:根据表之间的关系和数据元素之间的关系,设置合适的关联关系,如一对一、一对多、多对多等。
这些技巧可以帮助设计人员更好地定义表中的组件,以保证数据的正确性和有效性。
关键字是指在SQL语句中具有特殊含义的单词或符号,如SELECT、FROM、WHERE等。关键字在SQL语句中起到了重要的作用,用于表示查询的对象、条件和 *** 作等。与定义表中的组件无直接关系,但在SQL语句中需要使用正确的关键字来 *** 作表中的数据。
对外数据模型为关系型数据库,内部的实现主要分成两大类,一类是disk-based,比如mysql,postgres,一类是memory based,后者包括MemSQL,SAP HAHA,OceanBase。看题目的意思指的是前者。这里说一个disk-based的关系型数据库涉及多少东西。上世纪70/80年代内存不大,数据不能都放在内存里,大部分数据都存在磁盘上,读数据也需要从磁盘读,然而读写磁盘太慢了,所以就在内存里做了一个buffer pool,将已经读过的数据缓存到buffer pool中,写的时候也是写到buffer pool中就返回,buffer pool的功能就是管理数据在磁盘和内存的移动。在buffer pool中数据的管理单位是page。page大小一般几十KB。一般都可以配置。如果buffer pool中没有空闲的page,就需要将某一个page提出buffer pool,如果它是dirty page,就需要flush到磁盘,这里又需要一个LRU算法。一个page包含多条记录,page的格式需要设计用来支持变长字段。如果这时宕机了,buffer pool中的数据就丢了。这就需要REDO log,将对数据的修改先写到redo log中,然后写buffer pool,然后返回给客户端,随后,buffer pool中的dirty page会被刷到数据文件中(NO FORCE)。那么重启的时候,数据就能从redo log中恢复。REDO log还没刷完就刷数据到磁盘可以加快写入速度,缺点就是恢复的时候需要回放UNDO log,回滚一些还没有提交的事务的修改。写log又分为逻辑log和物理log,还有物理逻辑log。简单说逻辑log就是记录 *** 作,比如将某个值从1改成2.而物理log记录具体到record的位置,例如某个page的某个record的某个field,原来的值是多少,新值是多少等。逻辑log的问题是并发情况下不太好恢复成一致。物理log对于某些 *** 作比如create table又过于琐碎,所以一般数据库都采用混合的方式。为了跟踪系统中各种 *** 作的顺序,这就需要为log分配id,记做LSN(log sequence number)。系统中记录各种LSN,比如pageLSN, flushedLSN等等。为了加快宕机恢复速度,需要定期写checkpoint,checkpoint就是一个LSN。
以上ACID里的C和D有关。下面说A和I,即原子性和隔离性。
这两个性质通过concurrency control来保证。隔离级别有很多种,最开始有4种,从低到高read uncommitted, read committed, repeatable read, serializable。serializable就是多个事务并发执行的结果和某种顺序执行事务的结果相同。除了serializable,其他都有各种问题。比如repeatable read有幻读问题(phantom),避免幻读需要gap lock。read committed有幻读和不可重复读问题。后来又多了一些隔离级别,比如snapshot isolation,snapshot isolation也有write skew问题。早期,并发控制协议大多是基于两阶段锁来做的(2PL),所以早期只有前面提到的四种隔离级别,后来,又出现一类并发控制协议,统称为Timestamp Ordering,所以又多了snapshot isolation等隔离级别。关于隔离级别,可以看看这篇论文 http://research.microsoft.com/pubs/69541/tr-95-51.pdf。2PL需要处理deadlock的问题。
Timestamp Ordering大体的思想就是认为事务之间冲突不大,不需要加锁,只在commit的时候check是否有冲突。属于一种乐观锁。
Timestamp Ordering具体来说包括多种,最常见的MVCC就是这类,还有一类叫做OCC(optimistic concurrency control)。MVCC就是对于事务的每次更新都产生新的版本,使用时间戳做版本号。读的时候可以读指定版本或者读最新的版本。几乎主流数据库都支持MVCC,因为MVCC读写互相不阻塞,读性能高。MySQL的回滚段就是用来保存老的版本。MVCC需要有后台线程来做不再需要的版本的回收工作。Postgres的vacuum就是做这事的。OCC和MVCC的区别是,OCC协议中,事务的修改保存在私有空间(比如客户端),commit的时候再去检测冲突,通常的做法是事务开始时看一下自己要修改的数据的最后一次修改的时间戳,提交的时候去check是否这个时间戳变大了,如果是,说明被别人改过了,冲突。冲突后可以回滚或者重试。
上面这些搞定了就实现了数据库的核心,然后为了性能,需要index,通常有两种,一种支持顺序扫描B+Tree,还有一种是Hash Index。单条读适合用Hash Index,O(1)时间复杂度,顺序扫描只适合用B+Tree,O(logN)复杂度。然后,有些查询只需要扫描索引就能得到结果,有些查询直接扫描数据表就能得到结果,有些查询可以走二级索引,通过二级索引找到数据表然后得到结果。。具体用哪种方式就是优化器的事了。
再外围一些,关系型数据库自然需要支持SQL了,由SQL变成最后可以执行的物理执行计划中间又有很多步,首先SQL通过词法语法分析生成抽象语法树,然后planner基于这棵树生成逻辑执行计划,逻辑执行计划的生成通常涉及到等价谓词重写,子查询消除等逻辑层面的优化技术,优化的目的当然是性能。比如等价谓词重写,用大于小于谓词消除like,between .. and..等不能利用索引的谓词。下一步是逻辑执行计划生成物理执行计划,物理执行计划树每个节点是一个operator,operator的执行就是实实在在的 *** 作,比如扫表的operator,filter opertor。一个逻辑执行计划通常可以有多个物理执行对应,选择哪个就涉及到物理执行计划优化,这里涉及到经典的cost model,综合考虑内存,CPU, I/O,网络等。最典型的,三表join,从左到右还是右到左,使用hash join,还是sort merge join等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)