用origin 8.0怎样把基线调平

用origin 8.0怎样把基线调平,第1张

基线调平的方法如下:

1、第一步我们首先得打开origin 80,然后得在绘制界面中画出曲线,让曲线数据asceding即上调,然后再让基线不平。

2、第二部我们点击主界面的analysis,选择Peaks and Baseline—>Peak Analyzer—>Open Dialog就可以打开对话窗口了。然后我们点击Substract Baseline(定基线),就可以手动扣基线了。

然后再“Method”里选择“Auto create”,然后点击“next”,“points of baseline ”里面的点可以改变,然后在点击“Apply”。

3、第三步我们点击“modify/del”修改或删除点。然后就可以去调整基线d点的位置,调到合适的位置,调整完,点“done”。直到基点位置定好后,则点击Subtract进行扣基线,即可得到水平基线。之后点击Finish即完成基线的拉平过程。

扩展资料:

Origin是由OriginLab公司开发的一个科学绘图、数据分析软件,支持在Microsoft Windows下运行。Origin支持各种各样的2D/3D图形。

Origin中的数据分析功能包括统计,信号处理,曲线拟合以及峰值分析。Origin中的曲线拟合是采用基于Levernberg-Marquardt算法(LMA)的非线性最小二乘法拟合。

Origin强大的数据导入功能,支持多种格式的数据,包括ASCII、Excel、NI TDM、DIADem、NetCDF、SPC等等。图形输出格式多样,例如JPEG,GIF,EPS,TIFF等。内置的查询工具可通过ADO访问数据库数据。

Origin是一个具有电子数据表前端的图形化用户界面软件。与常用的电子制表软件不同,如Excel。Origin的工作表是以列为对象的,每一列具有相应的属性,例如名称,数量单位,以及其他用户自定义标识。

Origin以列计算式取代数据单元计算式进行计算。Origin可使用自身的脚本语言(LabTalk)去控制软件,该语言可使用Origin C进行扩展。Origin C是内置的基于C/C++的编译语言。

值得注意的是,Origin可以作为一个COM服务器,通过VBNET,C#,LabVIEW等程序进行调用。

参考资料来源:百度百科-Origin80实用教程

什么是大数据

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

大数据的定义

大数据由巨型数据集组成,这些数据集大小常超出人类在可接受时间下的收集、庋用、管理和处理能力。大数据的大小经常改变,截至2012年,单一数据集的大小从数太字节(TB)至数十兆亿字节(PB)不等。

在一份2001年的研究与相关的演讲中,麦塔集团(META Group,现为高德纳)分析员道格·莱尼(Doug Laney)指出数据增长的挑战和机遇有三个方向:量(Volume,数据大小)、速(Velocity,数据输入输出的速度)与多变(Variety,多样性),合称“3V”或“3Vs”。高德纳与现在大部分大数据产业中的公司,都继续使用3V来描述大数据。高德纳于2012年修改对大数据的定义:“大数据是大量、高速、及/或多变的信息资产,它需要新型的处理方式去促成更强的决策能力、洞察力与最优化处理。”另外,有机构在3V之外定义第4个V:真实性(Veracity)为第四特点。

大数据必须借由计算机对数据进行统计、比对、解析方能得出客观结果。美国在2012年就开始着手大数据,奥巴马更在同年投入2亿美金在大数据的开发中,更强调大数据会是之后的未来石油。数据挖掘(data mining)则是在探讨用以解析大数据的方法。

大数据的特点

具体来说,大数据具有4个基本特征:

一是数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过15PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。

二是数据类型多样。现在的数据类型不仅是文本形式,更多的是、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。

三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。

四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

大数据的作用

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

第四,大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

大数据的分析

众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?

1 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能足以从数据中主动地提取信息。

5数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术

数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取:关系数据库、NOSQL、SQL等。

基础架构:云存储、分布式文件存储等。

数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。

统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

模型预测:预测模型、机器学习、建模仿真。

结果呈现:云计算、标签云、关系图等。

大数据的处理

1 大数据处理之一:采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

2 大数据处理之二:导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3 大数据处理之三:统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4 大数据处理之四:挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

大数据的常见误解

一、数据不等于信息

经常有人把数据和信息当作同义词来用。其实不然,数据指的是一个原始的数据点(无论是通过数字,文字,还是视频等等),信息则直接与内容挂钩,需要有资讯性(informative)。数据越多,不一定就能代表信息越多,更不能代表信息就会成比例增多。有两个简单的例子:

备份。很多人如今已经会定期的对自己的硬盘进行备份。这个没什么好多解释的,每次备份都会创造出一组新的数据,但信息并没有增多。

多个社交网站上的信息。我们当中的很多人在多个社交网站上活跃,随着我们上的社交网站越多,我们获得的数据就会成比例的增多,我们获得的信息虽然也会增多,但却不会成比例的增多。不单单因为我们会互相转发好友的微博(或者其他社交网站上的内容),更因为很多内容会十分类似,有些微博虽然具体文字不同,但表达的内容十分相似。

二、信息不等于智慧(Insight)

现在我们去除了数据中所有重复的部分,也整合了内容类似的数据,现在我们剩下的全是信息了,这对我们就一定有用吗?不一定,信息要能转化成智慧,至少要满足一下三个标准:

可破译性。这可能是个大数据时代特有的问题,越来越多的企业每天都会生产出大量的数据,却还没想好怎么用,因此,他们就将这些数据暂时非结构化(unstructured)的存储起来。这些非结构化的数据却不一定可破译。比如说,你记录了某客户在你网站上三次翻页的时间间隔:3秒,2秒,17秒,却忘记标注这三个时间到底代表了什么,这些数据是信息(非重复性),却不可破译,因此不可能成为智慧。

关联性。无关的信息,至多只是噪音。

新颖性。这里的新颖性很多时候无法仅仅根据我们手上的数据和信息进行判断。举个例子,某电子商务公司通过一组数据/信息,分析出了客户愿意为当天送货的产品多支付10块钱,然后又通过另一组完全独立的数据/信息得到了同样的内容,这样的情况下,后者就不具备新颖性。不幸的是,很多时候,我们只有在处理了大量的数据和信息以后,才能判断它们的新颖性。

大数据时代存储所面对的问题

随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。

从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。

容量问题

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。

“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。

延迟问题

“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。

有很多“大数据”应用环境需要较高的IOPS性能(IOPS (Input/Output Operations Per Second),即每秒进行读写(I/O) *** 作的次数,多用于数据库等场合,衡量随机访问的性能),比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。

并发访问一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。

安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。

成本问题

“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。

很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。

对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。

数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

应用感知

最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。

小用户怎么办?

依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。

Xsecure产品系列实现对数据库的全方位防护 ,需要覆盖数据库的事前、事中、事后安全;覆盖数据库应用安全、维护安全、使用安全和存储安全;是最全面的数据库防泄露产品。 数据库漏洞扫描系统Xsecure-DBScan ,是一款帮助用户对当前的数据库系统进行自动化安全评估的专业软件,能有效暴露当前数据库系统的安全问题,提供对数据库的安全状况进行持续化监控,帮助用户保持数据库的安全健康状态。

发现外部黑客攻击漏洞,防止外部攻击:实现非授权的从外到内的检测;模拟黑客使用的漏洞发现技术,在没有授权的情况下,对目标数据库的安全性作深入的探测分析;收集外部人员可以利用的数据库漏洞的详细信息。分析内部不安全配置,防止越权访问:通过只读账户,实现由内到外的检测;提供现有数据的漏洞透视图和数据库配置安全评估;避免内外部的非授权访问。

监控数据库安全状况,防止数据库安全状况恶化:对于数据库建立安全基线,对数据库进行定期扫描,对所有安全状况发生的变化进行报告和分析。 *** 作系统中的对象一般情况下是文件,而数据库支持的应用要求更为精细。通常比较完整的数据库对数据安全性采取以下措施:

(1)将数据库中需要保护的部分与其他部分相隔。

(2)采用授权规则,如账户、口令和权限控制等访问控制方法。

(3)对数据进行加密后存储于数据库。 由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏。数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。比如对系统的误 *** 作造成的数据错误等。

统一监控平台,说到底本质上也是一个监控系统,监控的基本能力是必不可少的,回归到监控的本质,先梳理下整个监控体系:

① 监控系统的本质是通过发现故障、解决故障、预防故障来为了保障业务的稳定。

② 监控体系一般来说包括数据采集、数据检测、告警管理、故障管理、视图管理和监控管理6大模块。而数据采集、数据检测和告警处理是监控的最小闭环,但如果想要真正把监控系统做好,那故障管理闭环、视图管理、监控管理的模块也缺一不可。

一、数据采集

1、采集方式

数据采集方式一般分为Agent模式和非Agent模式;

Agent模式包括插件采集、脚本采集、日志采集、进程采集、APM探针等

非Agent模式包括通用协议采集、Web拨测、API接口等

2、数据类型

监控的数据类型有指标、日志、跟踪数据三种类型。

指标数据是数值型的监控项,主要是通过维度来做标识。

日志数据是字符型的数据,主要是从中找一些关键字信息来做监控。

跟踪型数据反馈的是跟踪链路一个数据流转的过程,观察过程中的耗时性能是否正常。

3、采集频率

采集频率分秒级、分钟级、随机三种类型。常用的采集频率为分钟级。

4、采集传输

采集传输可按传输发起分类,也可按传输链路分类。

按传输发起分类有主动采集Pull(拉)、被动接收Push(推)

按传输链路分类有直连模式、Proxy传输。

其中Proxy传输不仅能解决监控数据跨网传输的问题,还可以缓解监控节点数量过多导致出现的数据传输的瓶颈,用Proxy实现数据分流。

5、数据存储

对于监控系统来说,主要有以下三种存储供选择

① 关系型数据库

例如MySQL、MSSQL、DB2;典型监控系统代表:Zabbix、SCOM、Tivoli;

由于数据库本身的限制,很难搞定海量监控的场景,有性能瓶颈,只在传统监控系统常用

② 时序数据库

为监控这种场景设计的数据库,擅长于指标数据存储和计算;例如InfluxDB、OpenTSDB(基于Hbase)、Prometheus等;典型监控系统代表:TICK监控框架、 Open-falcon、Prometheus

③ 全文检索数据库

这类型数据库主要用于日志型存储,对数据检索非常友好,例如Elasticsearch。

二、数据检测

1 数据加工

① 数据清洗

数据清洗比如日志数据的清洗,因为日志数据是非结构化的数据,信息密度较低,因此需要从中提取有用的数据。

② 数据计算

很多原始性能数据不能直接用来判断数据是否产生异常。比如采集的数据是磁盘总量和磁盘使用量,如果要检测磁盘使用率,就需要对现有指标进行一个简单的四则运算,才能得到磁盘使用率。

③ 数据丰富

数据丰富就是给数据打上一些tags标签,比如打上主机、机房的标签,方便进行聚合计算。

④ 指标派生

指标派生指的是通过已有的指标,通过计算得出新的指标。

2 检测算法

有固定规则和机器学习算法。固定算法是较为常见的算法,静态阈值、同比环比、自定义规则,而机器学习主要有动态基线、毛刺检测、指标预测、多指标关联检测等算法。

无论是固定规则还是机器学习,都会有相应的判断规则,即常见的< > >=和and/or的组合判断等。

三、告警管理

1 告警丰富

告警丰富是为了后续告警事件分析做准备,需要辅助信息去判断该怎么处理、分析和通知。

告警丰富一般是通过规则,联动CMDB、知识库、作业历史记录等数据源,实现告警字段、关联信息的丰富;通过人工打Tags也是一种丰富方式,不过实际场景下由于人工成本高导致难以落地。

2 告警收敛

告警收敛有三种思路:抑制、屏蔽和聚合

① 抑制

即抑制同样的问题,避免重复告警。常见的抑制方案有防抖抑制、依赖抑制、时间抑制、组合条件抑制、高可用抑制等。

② 屏蔽

屏蔽可预知的情况,比如变更维护期、固定的周期任务这些已经知道会发生的事件,心里已经有预期。

③ 聚合

聚合是把类似或相同的告警进行合并,因为可能反馈的是同一个现象。比如业务访问量升高,那承载业务的主机的CPU、内存、磁盘IO、网络IO等各项性能都会飙升,这样把这些性能指标都聚合到一块,更加便于告警的分析处理。

3 告警通知

① 通知到人

通过一些常规的通知渠道,能够触达到人。

这样在没有人盯屏的时候,可以通过微信、短信、邮件触发到工作人员。

② 通知到系统

一般通过API推送给第三方系统,便于进行后续的事件处理

另外还需要支持自定义渠道扩展(比如企业里有自己的IM系统,可以自行接入)

四、故障管理

告警事件必须要处理有闭环,否则监控是没有意义的。

最常见还是人工处理:值班、工单、故障升级等。

经验积累可以把人工处理的故障积累到知识库里面,用于后续故障处理的参考。

自动处理,通过提取一些特定告警的固化的处理流程,实现特定场景的故障自愈;比如磁盘空间告警时把一些无用日志清掉。

智能分析主要是通过故障的关联分析、定位、预测等AI算法,进一步提升故障定位和处理的效率;

1 视图管理

视图管理也属于增值性功能,主要是满足人的心理述求,做到心中有底,面向的角色很多(领导、管理员、值班员等)。

大屏:面向领导,提供全局概览

拓扑:面向运维人员,提供告警关联关系和影响面视图

仪表盘:面向运维人员,提供自定义的关注指标的视图

报表:面向运维人员、领导,提供一些统计汇总报表信息,例如周报、日报等

检索:面向运维人员,用于故障分析场景下的各类数据检索

2 监控管理

监控管理是企业监控落地过程中的最大挑战。前5个模块都是监控系统对外提供的服务功能,而监控管理才是面向监控系统自身的管理和控制,关注真正落地的过程的功能呈现。主要有以下几个方面:

配置:简单、批量、自动

覆盖率:监控水平的衡量指标

指标库:监控指标的规范

移动端:随时随地处理问题

权限:使用控制

审计:管理合规

API:运维数据最大的来源,用于数据消费

自监控:自身稳定的保障

为了实现上述监控六大基础能力模块,我们可以按如下架构设计我们的统一监控平台。

主要分三层,接入层,能力层,功能层。

接入层主要考虑各种数据的接入,除了本身Agent和插件的采集接入,还需要支持第三方监控源的数据接入,才能算一个完整的统一监控平台。

能力层主要考虑监控的基础通用能力,包含数据采集模块、数据存储模块、数据加工模块、数据检测模块、AI分析模块。

功能层需要贴近用户使用场景,主要有管理、展示两类功能,在建设的过程中可以不断丰富功能场景。

另外,考虑到数据的关联关系,为未来的数据分析打下基础,监控和CMDB也需要紧密联动,所有的监控对象都应该用CMDB进行管理,另外,还可以配置驱动监控为指导理念,实现监控的自动上下线,告警通知自动识别负责人等场景,简化监控的维护管理。

为了统一监控平台能够在企业更好的落地,我们需要配备对应的管理体系,其中最重要的是指标管理体系。

指标管理体系的核心理念:

监控的指标体系是以CMDB为骨架,以监控指标为经脉,将整个统一监控平台的数据有机整合起来。

贯穿指标的生命周期管理,辅以指标的管理规范,保障监控平台长久有序的运行。

从企业业务应用的视角出发,一般将企业监控的对象分为6层,也可以根据企业自己的情况进行调整:

基础设施层

硬件设备层

*** 作系统层

组件服务层

应用性能层

业务运营层

以上就是关于用origin 8.0怎样把基线调平全部的内容,包括:用origin 8.0怎样把基线调平、你所了解的大数据,是真正的大数据吗、数据库安全的防护手段等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9715304.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存