首先用postman测试接口
根据请求方式将数据存入数据库中
首先用postman测试接口
通过url,选择相应的请求方式,头部,数据格式,点击send看能否获取数据
根据请求方式将数据存入数据库中
下面是post请求方式def get() URL = '' HEADERS = {'Content-Type': 'application/json'} JSON = {} response = requestpost(URL,headers=HEADERS,json=JSON) #jsonloads()用于将str类型的数据转成dict jsondata = jsonload(responsetxt) for i in jsondata: date1 = i[data] type1 = i[type] #拼接sql语句 sql="" conn=MySQLdbconnect(host="localhost",user="root",passwd="sa",db="mytable") cursor=conncursor() ursorexecute(sql)
class Buffer(object):
MAXSIZE = 8192
def __init__(self, conn, sql):
selfconn = conn
selfsql = sql
selfbuffer = []
def append(self, data):
selfbufferappend(data)
if len(selfbuffer) > selfMAXSIZE:
selfflush()
def flush(self):
data, selfbuffer = selfbuffer, []
curr = selfconncursor()
currexecutemany(selfsql, data)
selfconncommit()
# here are your code for init database connect conn_src and conn_store
buff = Buffer(conn_store, "insert into sybase_user values (%s, %s)")
sql_query = "select aid, aname from user_info a where aid=%s"
curr_src = conn_srccursor()
curr_srcexecute(sql_query, '0001')
for row in curr_src:
buffappend(row)
buffflush()
设置索引字段。在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。
按行提取信息。第一步是按行提取数据,例如提取某个用户的信息。
按列提取信息。第二步是按列提取数据,例如提取用户工作年限列的所有信息。
按行与列提取信息。第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息。
在前面的基础上继续增加条件,增加一行同时查询两个特定用户的贷款金额信息。
在前面的代码后增加sum函数,对结果进行求和。
除了增加行的查询条件以外,还可以增加列的查询条件。
多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的贷款金额和年收入两个字段求和,并显示出结果。
提取特定日期的信息。数据提取中还有一种很常见的需求就是按日期维度对数据进行汇总和提取,如按月,季度的汇总数据提取和按特定时间段的数据提取等等。
设置索引字段。首先将索引字段改为数据表中的日期字段,这里将issue_d设置为数据表的索引字段。按日期进行查询和数据提取。
两种方法
1、python读取文件后,解析value中的id,存储到list中,再读另一个文件时,去list里判断是否已存在
2、python读取另一个文件后,解析values中的id,脚本直接去数据库判断是否存在
其实数据库可以设计id未主键,这样你直接insert即可,出错的话,数据库会容错
简介
我是一名应届经济学毕业生,在学习Python语言的过程中,接触到了数据分析,机器学习和人工智能,并对此特别感兴趣,现在我把整个学习过程记录下来,希望和我有相同兴趣和爱好的朋友们一同成长,期盼着各位专家的指导。
环境介绍
在整个过程当中,将采用Python和Excel,采用Python,是因为Python提供了丰富的开发框架和工具库,使用Excel是因为Excel是使用非常广泛的办公软件,我在Excel里将复杂的算法简单化,使大家快速理解各种难以理解的算法。
在开始之前,我们已经准备好了Anaconda和Excel环境。在这里省略了这个过程。
数据获取将通过tushare开放平台,后面我会介绍和演示如何应用tushare平台。
数据分析流程简介
数据分析是由数据收集开始,收集的数据经过标准化处理和整理后,通过各种算法,进行数据分析,目的是为了总结过去的 历史 数据,在数据趋势上预测未来的走势,同时对现存的环境进行优化。
我们今天先从数据收集开始。
数据收集需要应用到Python对文件的读写 *** 作。
下面这段代码以只读方式采用’UTF-8’编码方式打开当前目录下的text1txt文件,并输出到屏幕上。 *** 作完毕后,关闭文件。
小贴士:在从tushare平台获取数据时,每个用户会分配到一个key,我们可以把这个key封装到这个文件里。为的是数据安全和便利性。
Python对数据的处理主要是csv文件格式,Excel和数据库。今天我们主要针对csv文件进行 *** 作。为的是尽快开始我们的数据分析之旅。后面在适当的时候,我来完成对Excel和数据库的 *** 作。
Python 读取csv文件有很多种方法,我们这里采用PANDAS库,下面是读取csv文件代码:
下面这段代码先生成数据列表,然后写入csv文件。
好了,到现在为止,Python对数据收集的基础工作就算完成了,Python对文件 *** 作有很多技巧,不是我们这一系列的重点,就不一一介绍了,有兴趣的伙伴可以查阅相关文档。
这篇文章主要介绍了Python与数据库的交互,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
安装模块 pip install pymongo
添加---> insert_one | insert_many
查找---> find | find_one
注意要用list转换得到的数据
修改---> update_one | update_many
删除---> delete_one | delete_many
注意该数据库对大小写敏感
安装模块 pip install pymysql
安装模块 pip install redis
MySQL
是一个关系型数据库管理系统,由瑞典MySQLAB公司开发,目前属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL是最好的RDBMS(RelationalDatabaseManagementSystem,关系数据库管理系统)应用软件。
MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言。MySQL软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。
:《Python基础教程》
应用环境
与其他的大型数据库例如Oracle、DB2、SQLServer等相比,MySQL自有它的不足之处,但是这丝毫也没有减少它受欢迎的程度。对于一般的个人使用者和中小型企业来说,MySQL提供的功能已经绰绰有余,而且由于MySQL是开放源码软件,因此可以大大降低总体拥有成本。
MongoDB
是一个基于分布式文件存储的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
特点
它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:
面向集合存储,易存储对象类型的数据。
mongodb集群参考
模式自由。
支持动态查询。
支持完全索引,包含内部对象。
支持查询。
支持复制和故障恢复。
使用高效的二进制数据存储,包括大型对象(如视频等)。
自动处理碎片,以支持云计算层次的扩展性。
支持RUBY,PYTHON,JAVA,C,PHP,C#等多种语言。
文件存储格式为BSON(一种JSON的扩展)。
可通过网络访问。
以上就是关于从数据库里python获取数据存到本地数据库全部的内容,包括:从数据库里python获取数据存到本地数据库、python 读取本地数据然后插入到另一个数据库中、python进行数据库查询中怎么把结果提取出来,跪谢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)