什么是高维数据

什么是高维数据,第1张

高维

数据

概念

其实不难,简单的说就是多维数据的意思。平时我们经常接触的是一维数据或者可以写成表形式的二维数据,高维数据也可以类推,不过

维数

较高的时候,直观表示很难。

目前

高维数据挖掘

是研究重点,这是它的特点:

高维数据挖掘是基于高维度的一种

数据挖掘

,它和传统的数据挖掘最主要的区别在于它的高维度。目前高维数据挖掘已成为数据挖掘的重点和难点。随着技术的进步使得数据收集变得越来越容易,导致数据库

规模

越来越大、

复杂性

越来越高,如各种类型的贸易交易数据、Web

文档、

基因表达数据

、文档

词频

数据、用户评分数据、WEB使用数据及多媒体数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。

由于高维数据存在的普遍性,使得对高维数据挖掘的研究有着非常重要的意义。但由于“维灾”的影响,也使得高维数据挖掘变得异常地困难,必须采用一些特殊的

手段

进行处理。

随着数据维数的升高,高维

索引

结构

的性能迅速下降,在低

维空间

中,我们经常采用

欧式距离

作为数据之间的

相似性

度量,但在

高维空间

中很多情况下这种相似性的概念不复存在,这就给高维数据挖掘带来了很严峻的考验,一方面引起基于索引结构的

数据挖掘算法

的性能下降,另一方面很多基于全

空间距离

函数

的挖掘方法也会失效。解决的方法可以有以下几种:可以通过降维将数据从高维降到低维,然后用低维数据的处理办法进行处理;对算法效率下降问题可以通过设计更为有效的索引结构、采用

增量

算法及

并行算法

等来提高算法的性能;对失效的问题通过重新定义使其获得新生。

可伸缩性:许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。我们需要具有高度可伸缩性的聚类算法。

处理不同类型数据的能力:许多算法被设计用来聚类数值类型的数据。但是,应用可能要求聚类其他类型的数据,如二元类型(binary),分类/标称类型(categorical/nominal),序数型(ordinal)数据,或者这些数据类型的混合。

发现任意形状的聚类:许多聚类算法基于欧几里得或者曼哈顿距离度量来决定聚类。基于这样的距离度量的算法趋向于发现具有相近尺度和密度的球状簇。但是,一个簇可能是任意形状的。提出能发现任意形状簇的算法是很重要的。

用于决定输入参数的领域知识最小化:许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

处理“噪声”数据的能力:绝大多数现实中的数据库都包含了孤立点,缺失,或者错误的数据。一些聚类算法对于这样的数据敏感,可能导致低质量的聚类结果。

对于输入记录的顺序不敏感:一些聚类算法对于输入数据的顺序是敏感的。例如,同一个数据集合,当以不同的顺序交给同一个算法时,可能生成差别很大的聚类结果。开发对数据输入顺序不敏感的算法具有重要的意义。

高维度(high dimensionality):一个数据库或者数据仓库可能包含若干维或者属性。许多聚类算法擅长处理低维的数据,可能只涉及两到三维。人类的眼睛在最多三维的情况下能够很好地判断聚类的质量。在高维空间中聚类数据对象是非常有挑战性的,特别是考虑到这样的数据可能分布非常稀疏,而且高度偏斜。

基于约束的聚类:现实世界的应用可能需要在各种约束条件下进行聚类。假设你的工作是在一个城市中为给定数目的自动提款机选择安放位置,为了作出决定,你可以对住宅区进行聚类,同时考虑如城市的河流和公路网,每个地区的客户要求等情况。要找到既满足特定的约束,又具有良好聚类特性的数据分组是一项具有挑战性的任务。

可解释性和可用性:用户希望聚类结果是可解释的,可理解的,和可用的。也就是说,聚类可能需要和特定的语义解释和应用相联系。应用目标如何影响聚类方法的选择也是一个重要的研究课题。

常用的数据库软件有:

1、Oracle

70年代 一间名为Ampex的软件公司,正为中央情报局设计一套名叫Oracle的数据库,Ellison是程序员之一。Oracle是世界领先的信息管理软件开发商,因其复杂的关系数据库产品而闻名。Oracle数据库产品为财富排行榜上的前1000家公司所采用,许多大型网站、银行、证券、电信等都选用了Oracle系统。

2、SQL Server

SQLServer(Structured Query Language Server) 是一个关系数据库管理系统(DBMS)。它最初是由Microsoft Sybase 和Ashton-Tate三家公司共同开发的,于1988 年推出了第一个OS/2 版本。

在Windows NT 推出后,Microsoft与Sybase 在SQL Server 的开发上就分道扬镳了,Microsoft 将SQL Server 移植到Windows NT系统上,专注于开发推广SQL Server 的Windows NT 版本。

3、ACCESS

Access 是微软公司推出的基于Windows的桌面关系数据库管理系统(RDBMS,即Relational Database Management System),是Office系列应用软件之一。

它提供了表、查询、窗体、报表、页、宏、模块7种用来建立数据库系统的对象;提供了多种向导、生成器、模板,把数据存储、数据查询、界面设计、报表生成等 *** 作规范化;为建立功能完善的数据库管理系统提供了方便,也使得普通用户不必编写代码,就可以完成大部分数据管理的任务。

4、DB2

IBM公司研制的一种关系型数据库系统。DB2主要应用于大型应用系统,具有较好的可伸缩性,可支持从大型机到单用户环境,应用于OS/2Windows等平台下。

DB2提供了高层次的数据利用性、完整性、安全性、可恢复性,以及小规模到大规模应用程序的执行能力,具有与平台无关的基本功能和SQL命令。

5、MySQL

MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。

而2009年,SUN又被Oracle收购。对于Mysql的前途,没有任何人抱乐观的态度。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。

扩展资料:

Visual FoxPro原名FoxBase,最初是由美国Fox Software公司于1988年推出的数据库产品,在DOS上运行,与xBase系列兼容。

FoxPro是FoxBase的加强版,最高版本曾出过26。之后于1992年,Fox Software公司被Microsoft收购,加以发展,使其可以在Windows上运行,并且更名为 Visual FoxPro。

FoxPro比FoxBASE在功能和性能上又有了很大的改进,主要是引入了窗口、按纽、列表框和文本框等控件,进一步提高了系统的开发能力。

参考资料:

百度百科-数据库软件

HBase与传统关系数据库的区别?

答:主要体现在以下几个方面:1数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。

2数据 *** 作。关系数据库中包含了丰富的 *** 作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase *** 作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之间的关系,通常只采用单表的主键查询,所以它无法实现像关系数据库中那样的表与表之间的连接 *** 作。

3存储模式。关系数据库是基于行模式存储的,元祖或行会被连续地存储在磁盘页中。在读取数据时,需要顺序扫描每个元组,然后从中筛选出查询所需要的属性。如果每个元组只有少量属性的值对于查询是有用的,那么基于行模式存储就会浪费许多磁盘空间和内存带宽。HBase是基于列存储的,每个列族都由几个文件保存,不同列族的文件是分离的,它的优点是:可以降低I/O开销,支持大量并发用户查询,因为仅需要处理可以回答这些查询的列,而不是处理与查询无关的大量数据行;同一个列族中的数据会被一起进行压缩,由于同一列族内的数据相似度较高,因此可以获得较高的数据压缩比。

4数据索引。关系数据库通常可以针对不同列构建复杂的多个索引,以提高数据访问性能。与关系数据库不同的是,HBase只有一个索引——行键,通过巧妙的设计,HBase中所有访问方法,或者通过行键访问,或者通过行键扫描,从而使整个系统不会慢下来。由于HBase位于Hadoop框架之上,因此可以使用HadoopMapRece来快速、高效地生成索引表。

6数据维护。在关系数据库中,更新 *** 作会用最新的当前值去替换记录中原来的旧值,旧值被覆盖后就不会存在。而在HBase中执行更新 *** 作时,并不会删除数据旧的版本,而是生成一个新的版本,旧有的版本仍旧保留。

7可伸缩性。关系数据库很难实现横向扩展,纵向扩展的空间也比较有限。相反,HBase和BigTable这些分布式数据库就是为了实现灵活的水平扩展而开发的,因此能够轻易地通过在集群中增加或者减少硬件数量来实现性能的伸缩。

但是,相对于关系数据库来说,HBase也有自身的局限性,如HBase不支持事务,因此无法实现跨行的原子性。

注:本来也想来问这个问题,然后复制一下的。结果找不到,只好自己手打了,麻烦复制拿去用的同学点下赞呗。

31 MySQL简介

SQL Server数据库是目前最流行的关系数据库系统之一,它对服务器的要求比较低,并包含了视图的灵活运用、触发器与存储过程、用户自定义数据类型与自定义函数、维护数据的完整性等功能,有很强的实用性。

SQL Server是一个多用户、多线程SQL数据库服务器。SQL(结构化查询语言)是世界上最流行的和标准化的数据库语言。MySQL是凭一个客户机/服务器结构的形式来实现的,它由一个服务器守护程序和很多不同的客户程序和库组成。

SQL是一种标准化的语言,它使得存储、更新和存取信息更容易。例如,你能用SQL语言为一个网站检索产品信息及存储顾客信息,同时MySQL也足够快和灵活以允许你存储记录文件和图像MySQL与其他数据库管理系统相比,它具有许多的优势:

(1)MySQL是一个关系数据库管理系统。

(2)MySQL是开源的,也就是所它是免费的,可以减少许多企业的成本。

(3)MySQL系统的速度非常快,同时它的性能也是十分优良的。

(4)MySQL服务器实用性很强,能够工作在客户/服务器或嵌入系统中。

(5)我们可以有大量的MySQL软件可以使用,。

由于其体积小、速度快、成本低,世界上许多中小型网站选择了MySQL作为网站数据库。

以上就是关于什么是高维数据全部的内容,包括:什么是高维数据、聚类的典型要求、常见的数据库管理系统软件有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9769260.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存