什么是列式存储数据库

什么是列式存储数据库,第1张

列式数据是以列相关存储架构进行数据存储的数据库,主要适合与批量数据处理和即席查询。

GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只 *** 作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O *** 作提升数据吞吐量,从而进一步提高I/O效率。

由于采用列存储技术,还可以实现高效的透明压缩。

数据库给人们生活带来存储数据,利用数据库可以高效的对数据进行管理,包括数据的有效组织,查询和修改,同时可容易实现备份和恢复。

数据库是“按照数据结构来组织、存储和管理数据的仓库”。是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。

扩展资料:

数据库是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念实际包括两层意思:

(1)数据库是一个实体,它是能够合理保管数据的“仓库”,用户在该“仓库”中存放要管理的事务数据,“数据”和“库”两个概念结合成为数据库。

(2)数据库是数据管理的新方法和技术,它能更合适的组织数据、更方便的维护数据、更严密的控制数据和更有效的利用数据。

通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL *** 作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。

大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写 *** 作,从数据库是负责读 *** 作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。

NoSQL数据库大致分为5种类型

1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个

(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。

(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项

(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。

(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。

2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个

(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。

(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。

(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。

(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。

(6)Voldemort:具备数据备份和分布式键值存储系统。

(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。

3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个

(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。

(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapReduce查询,以及一个使用>

版本较多,列举部分如下:

1、MySQL是开源SQL数据库管理系统,由MySQLAB开发、发布和支持。是一个快速的、多线程、多用户和健壮的SQL数据库服务器,支持关键任务、重负载生产系统的使用,也可以将它嵌入到一个大配置的软件中去;

2、SQLServer是由微软开发的数据库管理系统,是Web上最流行的用于存储数据的数据库,它已广泛用于电子商务、银行、保险、电力等与数据库有关的行业;

3、Oracle在数据库领域一直处于领先地位。1984年首先将关系数据库转到了桌

目前比较常见的数据库:

SQL是用于访问和处理数据库的标准的计算机语言。

MySQL是小型的开源的关系型数据库管理系统。

SQL Server 是 Microsoft 开发的关系数据库管理系统。

Oracle数据库系统是目前世界上流行的关系数据库管理系统。

DB2是关系型数据库平台,其采用多进程多线索的结构,支持多用户或应用程序在同一条SQL 语句中查询不同数据库和数据。

PostgreSQL 是一个对象-关系数据库服务器,号称 "世界上最先进的开源关系型数据库"。

Hadoop是个很流行的分布式计算解决方案,Hive是基于hadoop的数据仓库工具,hive 构建在基于静态批处理的Hadoop 之上。

GreenPlum采用了MPP(大规模并行处理),是一个由多个独立的数据库服务组合成关系型数据库集群。

ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表。

R是一种集统计分析与图形显示为一体的统计分析软件,具有很强的互动性。

python是一种跨平台的计算机程序设计语言,被广泛用于系统管理任务的处理和Web编程。

目前,这些数据库都在树懒学堂有相关教程,可以跟着一步一步学习

以表格形式管理数据的数据库称为关系型数据库。

关系型数据库,是指采用了关系模型来组织数据的数据库,其以行和列的形式存储数据,以便于用户理解,关系型数据库这一系列的行和列被称为表,一组表组成了数据库。用户通过查询来检索数据库中的数据,而查询是一个用于限定数据库中某些区域的执行代码。关系模型可以简单理解为二维表格模型,而一个关系型数据库就是由二维表及其之间的关系组成的一个数据组织。

现在的信息系统一般都是用数据库来存储数据,利用数据库可以高效的对数据进行管理,包括数据的有效组织,查询和修改,同时可容易实现备份和恢复。

数据库的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。

当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。

扩展资料:

发展现状

在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。

特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来, 几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。

这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理。

以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同。

它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。 而传统的关系型数据库在一些传统领域依然保持了强大的生命力。

以上就是关于什么是列式存储数据库全部的内容,包括:什么是列式存储数据库、什么是数据库、大数据常用哪些数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9772959.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存