系统抽样最主要的优点是:实施简单,因为只有一个初始单位需要随机抽取,而不像简单随机抽样那样,每个样本单位都需要随机抽取。有时系统抽样甚至不需要一个完整的抽样框,它只需要总体单位的一个确定的排列。另外,如果对总体单位的排列规则有所了解并加以正确利用的话,系统抽样能达到相当高的精度。
系统抽样最主要的缺点是:估计量的精度估计比较困难。事实上许多行之有效的系统抽样并不是严格的概率抽样。
网络市场直接调研:网络直接市场调研是指利用互联网技术,通过网上问卷等形式调查网络消费者行为及其意向的一种市场调研类型。
按调研的思路不同分类可以分为网上问卷调研和网上论坛等调研方法。
2网络市场间接调研:网络间接市场调研主要是利用互联网收集与企业营销相关的市场,竞争者,消费者以及宏观环境等方面的信息。
搜索引擎;E-mail;新闻组公告栏;访问相关网站;从其他网上媒体获取竞争的信息;从有关新闻组和BBS中获取竞争者的信息
3网上调研样本的选择
随机抽样:简单随机抽样;分层抽样;整群抽样;等距抽样;
非随机抽样:任意抽样;判断抽样;配额抽样
信用评级(Credit Rating),又称资信评级,是一种社会中介服务为社会提供资信信息,或为单位自身提供决策参考。最初产生于20世纪初期的美国。1902年,穆迪公司的创始人约翰·穆迪开始对当时发行的铁路债券进行评级。后来延伸到各种金融产品及各种评估对象。由于信用评级的对象和要求有所不同,因而信用评级的内容和方法也有较大区别。我们研究资信的分类,就是为了对不同的信用评级项目探讨不同的信用评级标准和方法。
信用评级的方法
通常有自我评议、群众评议和专家评议三种。如由独立的专业评估机构评级,一般多由专家评议。如由政府机关统一组织评级,也可采用自我评议、群众评议和专家评议相结合的方法。至于评级的具体方法可以采用定量分析方法或定性分析法,也可两者结合运用。在定量分析方法中,还有功效系数法、分段计分法、梯级递减法等多种。
稀释性曲线(Rarefaction Curve)采用对测序序列进行随机抽样的方法,以抽到的序列数与它们所能代表OTU的数目构建曲线,即稀释性曲线。当曲线趋于平坦时,说明测序数据量合理,更多的数据量对发现新OTU的边际贡献很小;反之则表明继续测序还可能产生较多新的OTU。横轴:从某个样品中随机抽取的测序条数;"Label 003" 表示该分析是基于OTU 序列差异水平在003,即相似度为97% 的水平上进行运算的,客户可以选取其他不同的相似度水平。纵轴:基于该测序条数能构建的OTU数量。曲线解读:Ø 图1中每条曲线代表一个样品,用不同颜色标记;Ø 随测序深度增加,被发现OTU 的数量增加。当曲线趋于平缓时表示此时的测序数据量较为合理。2 Shannon-Wiener 曲线反映样品中微生物多样性的指数,利用各样品的测序量在不同测序深度时的微生物多样性指数构建曲线,以此反映各样本在不同测序数量时的微生物多样性。当曲线趋向平坦时,说明测序数据量足够大,可以反映样品中绝大多数的微生物物种信息。横轴:从某个样品中随机抽取的测序条数。纵轴:Shannon-Wiener 指数,用来估算群落多样性的高低。Shannon 指数计算公式:其中,Sobs= 实际测量出的OTU数目;ni= 含有i 条序列的OTU数目;N = 所有的序列数。曲线解读:Ø 图2每条曲线代表一个样品,用不同颜色标记,末端数字为实际测序条数;Ø 起初曲线直线上升,是由于测序条数远不足覆盖样品导致;Ø 数值升高直至平滑说明测序条数足以覆盖样品中的大部分微生物。3Rank-Abundance 曲线用于同时解释样品多样性的两个方面,即样品所含物种的丰富程度和均匀程度。物种的丰富程度由曲线在横轴上的长度来反映,曲线越宽,表示物种的组成越丰富;物种组成的均匀程度由曲线的形状来反映,曲线越平坦,表示物种组成的均匀程度越高。横轴:OTU 相对丰度含量等级降序排列。纵轴:相对丰度比例。曲线解读:Ø 图3与图4中每条曲线对应一个样本(参考右上角图标);Ø 图3与图4中横坐标表示的是OTU(物种)丰度排列顺序,纵坐标对应的是OTU(物种)所占相对丰度比例(图3为相对百分比例,图4为换算后Log值),曲线趋于水平则表示样品中各物种所占比例相似;曲线整体斜率越大则表示样品中各物种所占比例差异较大。4 样本群落组成分析:多样本柱状图/ 单样本饼状图 根据分类学分析结果,可以得知一个或多个样品在各分类水平上的物种组成比例情况,反映样品在不同分类学水平上的群落结构。柱状图(图5)横轴:各样品的编号。纵轴:相对丰度比例。图标解读:Ø 颜色对应此分类学水平下各物种名称,不同色块宽度表示不同物种相对丰度比例;Ø 可以在不同分类学水平下作图分析。饼状图(图6)在某一分类学水平上,不同菌群所占的相对丰度比例。不同颜色代表不同的物种。5 样品OTU 分布Venn 图用于统计多个样品中共有或独有的OTU数目,可以比较直观地表现各环境样品之间的OTU 组成相似程度。不同样品用不同颜色标记,各个数字代表了某个样品独有或几种样品共有的OTU 数量,对应的OTU编号会以EXCEL 表的形式在结题报告中呈现。分析要求单张分析图,样本分组至少两个,最多5 个。Ø 默认设置为97% 相似度水平下以OTU 为单位进行分析作图。6 Heatmap 图用颜色变化来反映二维矩阵或表格中的数据信息,它可以直观地将数据值的大小以定义的颜色深浅表示出来。将高丰度和低丰度的物种分块聚集,通过颜色梯度及相似程度来反映多个样品在各分类水平上群落组成的相似性和差异性。相对丰度比例:热图(图8)中每小格代表其所在样品中某个OTU 的相对丰度。以图8为例,红框高亮的小格所对应的信息为:样本(R11-1Z)中OTU(OTU128)的相对丰度比例大概为02%。丰度比例计算公式(Bray Curtis 算法):其中,SA,i = 表示A样品中第i个OTU所含的序列数SB,i = 表示B样品中第i个OTU所含的序列数样品间聚类关系树:进化树表示在选用成图数据中,样本与样本间序列的进化关系(差异关系)。处于同一分支内的样品序列进化关系相近。物种/OTU 丰度相似性树:丰度相似性树表示选用成图的数据中样品与样品中的OTU 或序列在丰度上的相似程度。丰度最相近的会分配到同一分支上。客户自定义分组:根据研究需求对菌群物种/OTU 研究样本进行二级分组Ø 二级物种/OTU 分组:将下级分类学水平物种或OTU 分配到对应的上级分类学水平,以不同颜色区分;Ø 二级样品分组:根据研究需要,对样品进行人为的分组,以不同颜色区分。7 主成分分析PCA (Principal Component Analysis)在多元统计分析中,主成分分析是一种简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中对方差贡献最大的特征,从而有效地找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。通过分析不同样品的OTU 组成可以反映样品间的差异和距离,PCA 运用方差分解,将多组数据的差异反映在二维坐标图上,坐标轴为能够最大程度反映方差的两个特征值。如样品组成越相似,反映在PCA图中的距离越近。横轴和纵轴:以百分数的形式体现主成分主要影响程度。以图9为例,主成分1(PC1)和主成分2(PC2)是造成四组样品(红色,蓝色,**和绿色)的两个最大差异特征,贡献率分别为411% 和271%。十字交叉线:在图9中作为0 点基线存在,起到辅助分析的作用,本身没有意义。图例解读:Ø PCA 分析图是基于每个样品中所含有的全部OTU 完成的;Ø 图9中每个点代表了一个样本;颜色则代表不同的样品分组;Ø 两点之间在横、纵坐标上的距离,代表了样品受主成分(PC1 或 PC2)影响下的相似性距离;Ø 样本数量越多,该分析意义越大;反之样本数量过少,会产生个体差异,导致PCA分析成图后形成较大距离的分开,建议多组样品时,每组不少于5个,不分组时样品不少于10个;Ø 图10中的圆圈为聚类分析结果,圆圈内的样品,其相似距离比较接近。8 RDA/ CCA 分析图基于对应分析发展的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。主要用来反映菌群与环境因子之间的关系。RDA 是基于线性模型,CCA是基于单峰模型。分析可以检测环境因子、样品、菌群三者之间的关系或者两两之间的关系。横轴和纵轴:RDA 和CCA 分析,模型不同,横纵坐标上的刻度为每个样品或者物种在与环境因子进行回归分析计算时产生的值,可以绘制于二维图形中。图例解读:Ø 冗余分析可以基于所有样品的OTU作图,也可以基于样品中优势物种作图;Ø 箭头射线:图11中的箭头分别代表不同的环境因子(即图中的碳酸氢根离子HCO3-,醋酸根离子AC-等,图中的其它环境因子因研究不同代表的意义不同,因此不再赘述);Ø 夹角:环境因子之间的夹角为锐角时表示两个环境因子之间呈正相关关系,钝角时呈负相关关系。环境因子的射线越长,说明该影响因子的影响程度越大;Ø 图11中不同颜色的点表示不同组别的样品或者同一组别不同时期的样品,图中的拉丁文代表物种名称,可以将关注的优势物种也纳入图中;Ø 环境因子数量要少于样本数量,同时在分析时,需要提供环境因子的数据,比如 pH值,测定的温度值等。9 单样品/ 多样品分类学系统组成树根据NCBI 提供的已有微生物物种的分类学信息数据库,将测序得到的物种丰度信息回归至数据库的分类学系统关系树中,从整个分类系统上全面了解样品中所有微生物的进化关系和丰度差异。单样品图(图12):可以了解单样品中的序列在各个分类学水平上的分布情况。图例解读:Ø 图12中不同的层次反映不同的分类学水平;Ø 分支处的圆面积说明了分布在该分类学水平,且无法继续往下级水平比对的序列数量,面积越大,说明此类序列越多;Ø 每个分支上的名词后面的两组数字分别表示比对到该分支上的序列数和驻留在该节点上的序列数;Ø 图13中为某单一水平物种分布情况,并非是序列分布。多样品图(图14):比对多个样品在不同分类学分支上序列数量差异。图例解读:Ø 比对不同样品在某分支上的序列数量差异,通过带颜色的饼状图呈现,饼状图的面积越大,说明在分支处的序列数量越多,不同的颜色代表不同的样品。Ø 某颜色的扇形面积越大,说明在该分支上,其对应样品的序列数比其他样品多。Ø 多样品在做该分析时,建议样品数量控制在10个以内,或者将重复样本数据合并成一个样本后,总样品数在10个以内。10系统发生进化树在分子进化研究中,基于系统发生的推断来揭示某一分类水平上序列间碱基的差异,进而构建进化树。
以上就是关于系统抽样的优缺点各是什么啊!全部的内容,包括:系统抽样的优缺点各是什么啊!、网络市场的调查方法。、用什么数据库检索全球上市公司的信用评级数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)