双十一的起源是在双十一网购狂欢节源于淘宝商城2009年11月11日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期。
意义影响是在当前经济下行压力加大的背景下,“双十一”购物狂欢节的汹涌客流和极为庞大的单日成交量显示了老百姓较强的消费意愿和较高的消费能力,这对拉动内需无疑是个积极信号。电子商务需求的逆势“井喷”,透露出中国网上消费的巨大潜力,是传统零售业态与新零售业态的的交锋。
“双十一”“低价”不可迷信
“双十一”是商家历时多年打造的“促销节”,线上线下市场笼罩在“巨惠特卖”、“全年最低”、“限时抢购”、“爆款秒杀”的宣传迷雾当中,给消费者形成“买到就是赚到”的心理预期。
但实际上,消协组织多年的价格监测和消费者投诉显示,一些商家“双十一”促销价格未必真实惠,有的商家使用的是“先涨后降”的套路,有的商家设置各种花式“买赠”,实际到手价格与平时并无差别,甚至还可能会是全年最贵。对此,中消协提醒消费者不可迷信“双十一”的所谓“价格优势”。
国产数据库排行榜是Kingbase,OceanBase,TiDB,HBase,MongoDB。
1、Kingbase
Kingbase是一款基于PostgreSQL的开源数据库,是北京人大金仓信息技术股份有限公司自主研制开发的具有自主知识产权的通用关系型数据库管理系统。
2、OceanBase
OceanBase是由蚂蚁集团完全自主研发的国产原生分布式数据库,始创于2010年。已连续9年平稳支撑双11,创新推出“三地五中心”城市级容灾新标准,是一个在TPC-C和TPC-H测试上都刷新了世界纪录的国产原生分布式数据库。
3、TiDB
TiDB是一款基于MySQL的分布式数据库,拥有高可用性、高性能和高安全性,是国内最受欢迎的数据库之一。
4、HBase
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
5、MongoDB
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。
作者:王慧贤
数据存储、数据分析、数据安全如今,围绕“数据”的话题越来越多,离人们的生活也越来越近。
从陌生到熟悉,数据不仅“出圈”,甚至已然站在了C位。去年,中央发布的《关于构建更加完善的要素市场化配置体制机制的意见》中明确表示,继土地、劳动力、资本、技术后,数据成为第五大生产要素。
步入信息化时代后,数据库、 *** 作系统与中间件作为计算机最基础的三大软件,支撑着企业的正常运行。
当数据成为生产要素后,必然会迎来爆发式增长,企业的数据存储和处理需求将进一步释放。更重要的是,疫情加快了数字化转型的脚步,更加速了企业的上云速度。
从信息化到数字化,时代的变革,总会带来商业世界的变化。如何在云原生架构下使用数据库,成为企业的痛点和云厂商的机会,亚马逊AWS的CTO Werner Vogels曾多次强调:“数据库是云计算的终极之战。”
在数智化时代,云原生到底意味着什么?云原生数据库和传统数据库相比,核心优势是什么?是否把数据库搬上云就是云原生?基于这些问题,雷锋网与阿里巴巴集团副总裁、阿里云数据库产品事业部负责人李飞飞展开一场对话。
国产云原生数据库,摆脱「切肤之痛」
如今,数据库的商业世界,因为云的出现与发展,分成了两大派系。
一派是以Oracle为代表的传统商用数据库,一派是以国外AWS、国内阿里云为代表的云原生数据库,去“IOE革命”下的产物。
其实,早期较为火热的数据库种类有三种,层次式数据库、网络式数据库和关系型数据库。
在《浪潮之巅》一书中,作者吴军写下了这样的观点:“Oracle 的兴起很大程度上靠的是它最早看到关系型数据库的市场前景,并且在商业模式上优于 IBM。”
因此,在云原生数据库“入世”之前,数据库的天下一直是Oracle的,国内大部分互联网公司都不得不采用Oracle+IBM小型机+EMC的模式来维持正常运营。
高昂的费用,使得对于数据库需求较大的互联网巨头“忍无可忍”。
2009年,阿里巴巴的Oracle RAC 集群节点数达到了创记录的20个。可由于Oracle并没有d性扩展的功能,只能按照峰值流量购买小型机和数据库,导致阿里将业务上涨带来的大部分利润,都支付给了Oracle。
第二年,阿里便开始走上了去“IOE”之路,根据开源MySQL搭建了AliSQL,并顺利经过了淘宝双11的考验,国产云原生数据库算是正式摆脱了“切肤之痛”,逐渐受到市场的真正认可。
另一边,国外的AWS在2015年公布了基于云计算的自研数据库Amazon Aurora。Aurora是一个关系型数据库,可以跨3个可用区域复制6份数据,其最大的特性就是高性能和高可用性。
云计算巨头的入局,让云原生数据库在国内外一步步成为主流。据Gartner预测,到了2021年,云数据库在整个数据库市场中的占比将首次达到50%,到2023年,75%的数据库都要跑在云平台之上。
关于云原生数据库,随着逐步的出圈,也让人们关心的焦点从“是啥?”转变为“还能解决哪些问题?”
但云原生数据库存在着数据孤岛的问题,无法打通多个数据系统的情况下,企业在数据加工和数据管理上就会“压力较大”,甚至在数据安全方面还存在隐患。
传统数据仓库一般基于T+1数据集成构建离线数仓,以支撑企业各项分析与服务。传统方案不但会影响线上业务稳定性,且难以支持企业的实时需求。
因此,在李飞飞看来,云原生数据库已经走到20阶段。这个阶段要解决的问题,就是上述存在的痛点。
9月26日,在阿里云数据库创新上云峰会上,阿里云发布了首个一站式敏捷数据仓库解决方案。该方案结合一站式数据管理平台DMS及云原生数据仓库AnalyticDB(简称:ADB),实现了库仓一体的技术架构,提供在线数据实时入仓、T+1周期性快照、按需建仓等能力,数据延时低至秒级,持续赋能业务在线化,使企业的在线数据可以释放出更大的价值。
相较于传统方案,阿里云一站式敏捷数据仓库解决方案有4大核心优势:
1、对业务侧影响小,不会因为数据汇聚集中和实时加工影响业务侧正常运行,CPU、内存占用低于5%;
2、事务顺序和数据准确性有保障,且处理链路短,支持在线数据实时处理落仓,效率更高。数据传输效率100m/s,数据延时在10秒内;
3、支持复杂实时数据加工、计算逻辑;
4、低代码 *** 作,能够大大降低实时数仓的构建难度,提升构建效率的同时,支撑企业数字化转型过程中的各类实时场景。
除了实时统计分析场景外,企业为满足周期性数据分析需求,需建设周期性全量快照。
传统数仓的周期性全量集成方案会对生产业务造成稳定性影响、全量集成时效性差、且无法满足客户针对任意时间点进行数据回溯的业务诉求。
针对T+1周期性集成场景,一站式敏捷数据仓库解决方案支持基于拉链表的T+1全量数据快照,用户通过简单几个步骤,即可按需生成各种周期的全量或增量快照。
此外,业务还可按需进行任意时间点的数据回溯,以快速解决数据异常问题。
谈起未来数据库的发展趋势,李飞飞提到以下五点:
1、云原生+分布式一定是数据库的标配,分布式已经是必选项。分布式数据库由多个相互连接的数据库组合而成,面向用户则是以单个数据库的形态出现。云原生分布式数据库具备易用性、高扩展性、快速迭代、节约成本等特征,从资源池化到d性扩展,再到智能运维,再到离在线一体化,解决企业用户的核心诉求。
2、AI for DB(database,指数据库)和 DB for AI 将是主流趋势。用AI将数据库运维管控智能化,尤其在云原生+分布式这个前提下更重要,因为数据库不仅是内核的能力d性高可用、可拓展性,更重要的是部署后应用和运维的复杂度要大大降低。在数据库里,面对越来越多非结构化的数据,分析能力十分重要。
3、数据的安全可信,在今天这个大环境下变得愈发重要,如何确保整个数据库系统,在处理数据全链路过程中提供加密能力、多方安全计算能力、隐私保护的能力,也是很重要的趋势。
4、多模数据处理能力将越来越重要。比如,新型数据库多模态的处理能力,在新能源 汽车 企业打标签、智能电池化预测等应用场景中,将发挥越来越重要的作用。
5、一份数据,多个数据处理引擎:实现仓库一体、仓库联动、仓库打通,数据之间无缝流转。
以上判断,也从侧面反映出阿里云数据库的走向,这点毋庸置疑。但除此之外,业界最关心的,还有开源。
近半年,国内很多厂商相继提出开源战略,背后缘由显而易见,为了打造生态。就在今年的阿里云峰会上,阿里云智能总裁、达摩院院长张建锋(花名行癫)将2021年阿里云的发展关键词归纳为:做好服务、做深基础、做厚中台、做强生态。
做好服务与生态,成为如今厂商们不约而同的目标,而开源,就是最好的选择。
当雷锋网问到:“未来,阿里云数据库会不会把所有能力都开源?”这一问题时,李飞飞给到的回答是:“不会。”
之所以有这样的回答,是因为对于开源,他有着一些判断和看法。
李飞飞表示,这些部分,本就是阿里云数据库的商业化版本。
事实上,业界大多数的数据库厂商都不会针对自身的核心能力开源,如TiDB的核心管控组件、TiFlash。
与像MongoDB,、Cassandra、CouchDB这些以开源起家的数据库厂商不同,开源只是阿里云数据库的战略,不是阿里云数据库的命脉。
前几年,有业内人士表示,在面向开源时,国产数据库首先需要解决信任以及开源知识产权等问题。“开源会让厂商更加认真思考版权还有专利的问题,事实上,选择开源后,对于数据库厂商提出了更高的要求。”
李飞飞认为,开源只是一种选择,数据库开源成功并不代表着商业化就能够成功,不开源也不能代表厂商不先进。
更准确的说,开源只是一种有效手段。
最终,阿里云数据库希望客户能够通过开源版本把阿里云数据库产品技术快速用起来,并能够参与到技术产品的迭代过程中,在一些高阶能力上,借鉴团队专业能力和阿里云的服务能力,成为良好的商业合作伙伴,这是李飞飞以及阿里云数据库对于开源的一些基本思考。雷锋网雷锋网雷锋网
又到了一年一度的双11,按捺了一年之久的“剁手党”们早已纷纷摩拳擦掌,急不可耐。那么哪类产品既能带给人们优质的服务体验,又能助力人们在工作、生活中事半功倍,获益满满呢?在万物互联信息化时代,无论是个人工作学习、影音娱乐还是企业提升办公效率,拓展业务途径都离不开“云”的助力。作为云服务商中的头部品牌,移动云值此双11来临之际,特推出狂欢双11,“移”价到底活动。活动期间,移动云明星云主机产品低至365元/月,新人特惠数据库更是仅需288元/月!
此次在狂欢双11,“移”价到底活动中,移动云为满足新用户体验急速上“云”,特推出首购特惠福利。未付费购买过的用户在实名认证后可领取超值优惠券,以超低折扣享受移动云云主机、云硬盘、云数据库、d性公网IP等明星产品,最低仅需3折,通用网络优化型云主机最低仅需665元/月起,通用型云数据库MySQL最低3535元/月起。还在为办公、业务低效发愁?体验云上便捷,移动云双11大促活动不容错过
前言 在系统开发过程中,经常遇到数据重复插入、重复更新、消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊。 什么是系统的幂等性 幂等是数据中得一个概念,表示N次变换和1次变换的结果相同。 高并发的系统如何保证幂等性? 1查询 查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多次一样的。 2MVCC方案 多版本并发控制,update with condition,更新带条件,这也是在系统设计的时候,合理的选择乐观锁,通过version或者其他条件,来做乐观锁,这样保证更新及时在并发的情况下,也不会有太大的问题。 例如:update table_xxx set name=#name#,version=version+1 where version=#version# ,或者是 update table_xxx set quality=quality-#subQuality# where quality-#subQuality# >= 0 。 3单独的去重表 如果涉及到的去重的地方特别多,例如ERP系统中有各种各样的业务单据,每一种业务单据都需要去重,这时候,可以单独搞一张去重表,在插入数据的时候,插入去重表,利用数据库的唯一索引特性,保证唯一的逻辑。 4分布式锁 还是拿插入数据的例子,如果是分布是系统,构建唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统,在业务系统插入数据或者更新数据,获取分布式锁,然后做 *** 作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。 5删除数据 删除数据,仅仅第一次删除是真正的 *** 作数据,第二次甚至第三次删除,直接返回成功,这样保证了幂等。 6插入数据的唯一索引 插入数据的唯一性,可以通过业务主键来进行约束,例如一个特定的业务场景,三个字段肯定确定唯一性,那么,可以在数据库表添加唯一索引来进行标示。 这里有一个场景,API层面的幂等,例如提交数据,如何控制重复提交,这里可以在提交数据的form表单或者客户端软件,增加一个唯一标示,然后服务端,根据这个UUID来进行去重,这样就能比较好的做到API层面的唯一标识。 7状态机幂等 在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机,就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。 以上就是高并发系统数据幂等的解决方案的资料整理,后续继续补充相关知识,谢谢大家对本站的支持!
数据库优化是系统工程,性能的提升靠整体。本课程将面面俱到的讲解提升数据库性能的各种因素,让你在最短的时间从小白到资深,将数据库整体架构了然于胸
第1章 实例和故事 试看7 节 | 50分钟
决定电商11大促成败的各个关键因素。
收起列表
视频:1-1 什么决定了电商双11大促的成败 (04:04)试看
视频:1-2 在双11大促中的数据库服务器 (06:03)
视频:1-3 在大促中什么影响了数据库性能 (07:55)
视频:1-4 大表带来的问题 (14:13)
视频:1-5 大事务带来的问题 (17:27)
作业:1-6 讨论题在日常工作中如何应对高并发大数据量对数据库性能挑战
作业:1-7 讨论题在MySQL中事务的作用是什么?
第2章 什么影响了MySQL性能 试看30 节 | 210分钟
详细介绍影响性能各个因素,包括硬件、 *** 作系统等等。
收起列表
视频:2-1 影响性能的几个方面 (04:08)试看
视频:2-2 CPU资源和可用内存大小 (10:54)
视频:2-3 磁盘的配置和选择 (04:44)
视频:2-4 使用RAID增加传统机器硬盘的性能 (11:30)
视频:2-5 使用固态存储SSD或PCIe卡 (08:35)
视频:2-6 使用网络存储SAN和NAS (07:16)
视频:2-7 总结:服务器硬件对性能的影响 (03:27)
视频:2-8 *** 作系统对性能的影响-MySQL适合的 *** 作系统 (03:50)
视频:2-9 CentOS系统参数优化 (11:43)
视频:2-10 文件系统对性能的影响 (03:29)
视频:2-11 MySQL体系结构 (05:29)
视频:2-12 MySQL常用存储引擎之MyISAM (13:23)
视频:2-13 MySQL常用存储引擎之Innodb (10:44)
视频:2-14 Innodb存储引擎的特性(1) (15:24)
视频:2-15 Innodb存储引擎的特性(2) (08:44)
视频:2-16 MySQL常用存储引擎之CSV (09:19)
视频:2-17 MySQL常用存储引擎之Archive (06:08)
视频:2-18 MySQL常用存储引擎之Memory (10:40)
视频:2-19 MySQL常用存储引擎之Federated (11:21)
视频:2-20 如何选择存储引擎 (04:33)
视频:2-21 MySQL服务器参数介绍 (08:04)
视频:2-22 内存配置相关参数 (09:24)
视频:2-23 IO相关配置参数 (10:01)
视频:2-24 安全相关配置参数 (06:13)
视频:2-25 其它常用配置参数 (03:41)
视频:2-26 数据库设计对性能的影响 (04:36)
视频:2-27 总结 (01:32)
作业:2-28 讨论题你会如何配置公司的数据库服务器硬件?
作业:2-29 讨论题你认为对数据库性能影响最大的因素是什么
作业:2-30 讨论题做为电商的DBA,建议开发选哪种MySQL存储引擎
第3章 MySQL基准测试8 节 | 65分钟
了解基准测试,MySQL基准测试工具介绍及实例演示。
收起列表
视频:3-1 什么是基准测试 (02:20)
视频:3-2 如何进行基准测试 (09:00)
视频:3-3 基准测试演示实例 (11:18)
视频:3-4 Mysql基准测试工具之mysqlslap (13:30)
视频:3-5 Mysql基准测试工具之sysbench (11:07)
视频:3-6 sysbench基准测试演示实例 (17:11)
作业:3-7 讨论题MySQL基准测试是否可以体现出业务系统的真实性能
作业:3-8 实 *** 题参数不同取值对性能的影响
第4章 MySQL数据库结构优化14 节 | 85分钟
详细介绍数据库结构设计、范式和反范式设计、物理设计等等。
收起列表
视频:4-1 数据库结构优化介绍 (06:52)
视频:4-2 数据库结构设计 (14:49)
视频:4-3 需求分析及逻辑设计 (11:00)
视频:4-4 需求分析及逻辑设计-反范式化设计 (06:44)
视频:4-5 范式化设计和反范式化设计优缺点 (04:06)
视频:4-6 物理设计介绍 (05:17)
视频:4-7 物理设计-数据类型的选择 (18:59)
视频:4-8 物理设计-如何存储日期类型 (13:37)
视频:4-9 物理设计-总结 (02:37)
图文:4-10 说明MyISAM和Innodb存储引擎的5点不同
作业:4-11 讨论题判断表结构是否符合第三范式要求如不满足要如何修改
作业:4-12 实 *** 题请设计一个电商订单系统的数据库结构
作业:4-13 讨论题以下那个字段适合作为Innodb表的主建使用
作业:4-14 讨论题请为下表中的字段选择合适的数据类型
第5章 MySQL高可用架构设计 试看24 节 | 249分钟
详细介绍二进制日志及其对复制的影响、GTID的复制、MMM、MHA等等。
收起列表
视频:5-1 mysql复制功能介绍 (04:58)
视频:5-2 mysql二进制日志 (22:05)
视频:5-3 mysql二进制日志格式对复制的影响 (09:37)
视频:5-4 mysql复制工作方式 (03:08)
视频:5-5 基于日志点的复制 (20:06)
视频:5-6 基于GTID的复制 (22:32)
视频:5-7 MySQL复制拓扑 (13:58)
视频:5-8 MySQL复制性能优化 (09:23)
视频:5-9 MySQL复制常见问题处理 (08:31)
视频:5-10 什么是高可用架构 (14:09)
视频:5-11 MMM架构介绍 (08:09)
视频:5-12 MMM架构实例演示(上) (09:16)试看
视频:5-13 MMM架构实例演示(下) (18:55)
视频:5-14 MMM架构的优缺点 (08:01)
视频:5-15 MHA架构介绍 (10:02)
视频:5-16 MHA架构实例演示(1) (13:11)
视频:5-17 MHA架构实例演示(2) (16:54)
视频:5-18 MHA架构优缺点 (05:14)
视频:5-19 读写分离和负载均衡介绍 (11:42)
视频:5-20 MaxScale实例演示 (18:25)
作业:5-21 讨论题MySQL主从复制为什么会有延迟,延迟又是如何产生
作业:5-22 实 *** 题请为某互联网项目设计9999%MySQL架构
作业:5-23 讨论题如何给一个已经存在的主从复制集群新增一个从节点
作业:5-24 讨论题给你三台数据库服务器,你如何设计它的高可用架构
第6章 数据库索引优化8 节 | 65分钟
介绍BTree索引和Hash索引,详细介绍索引的优化策略等等。
收起列表
视频:6-1 Btree索引和Hash索引 (20:09)
视频:6-2 安装演示数据库 (01:19)
视频:6-3 索引优化策略(上) (17:33)
视频:6-4 索引优化策略(中) (13:02)
视频:6-5 索引优化策略(下) (12:30)
作业:6-6 讨论题一列上建立了索引,查询时就一定会用到这个索引吗
作业:6-7 讨论题在定义联合索引时为什么需要注意联合索引中的顺序
作业:6-8 实 *** 题SQL建立索引,你会考虑那些因素
第7章 SQL查询优化9 节 | 62分钟
详细介绍慢查询日志及示例演示,MySQL查询优化器介绍及特定SQL的查询优化等。
收起列表
视频:7-1 获取有性能问题SQL的三种方法 (05:14)
视频:7-2 慢查询日志介绍 (08:57)
视频:7-3 慢查询日志实例 (08:27)
视频:7-4 实时获取性能问题SQL (02:21)
视频:7-5 SQL的解析预处理及生成执行计划 (16:02)
视频:7-6 如何确定查询处理各个阶段所消耗的时间 (09:35)
视频:7-7 特定SQL的查询优化 (10:34)
作业:7-8 讨论题如何跟据需要对一个大表中的数据进行删除或更新
作业:7-9 讨论题如何获取需要优化的SQL查询
第8章 数据库的分库分表5 节 | 48分钟
详细介绍数据库分库分表的实现原理及演示案例等。
收起列表
视频:8-1 数据库分库分表的几种方式 (04:34)
视频:8-2 数据库分片前的准备 (13:53)
视频:8-3 数据库分片演示(上) (11:40)
视频:8-4 数据库分片演示(下) (17:02)
作业:8-5 讨论题对于大表来说我们一定要进行分库分表吗
第9章 数据库监控7 节 | 29分钟
介绍数据库可用性监控、性能监控、MySQL主从复制监控等
收起列表
视频:9-1 数据库监控介绍 (04:46)
视频:9-2 数据库可用性监控 (07:20)
视频:9-3 数据库性能监控 (09:39)
视频:9-4 MySQL主从复制监控 (06:16)
作业:9-5 讨论题QPS是否可以真实的反映出数据库的负载情况
作业:9-6 讨论题如何正确评估数据库的当前负载状况
作业:9-7 实 *** 题开发一个简单监控脚本,监控mySQL数据库阻塞情况
以上就是关于双十一的起源及意义是什么全部的内容,包括:双十一的起源及意义是什么、国产数据库排行榜、对话阿里云李飞飞:关于云原生数据库的五大预判等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)