要求精度高就用decimal审题错了简单写下区别:float:浮点型,含字节数为4,32bit,数值范围为-34E38~34E38(7个有效位)double:双精度实型,含字节数为8,64bit数值范围-17E308~17E308(15个有效位)decimal:数字型,128bit,不存在精度损失,常用于银行帐目计算。(28个有效位)numberic===decimalfloatf=34598756f;//结果显示为3459876,只显示7个有效位,对最后一位数四舍五入。doubled=345975423578631442d;//结果显示为345975423578631,只显示15个有效位,对最后一位四舍五入。注:float和double的相乘 *** 作,数字溢出不会报错,会有精度的损失。decimaldd=345545454879//可以支持28位,对最后一位四舍五入。注:当对decimal类型进行 *** 作时,数值会因溢出而报错。
很长时间以来,关系型数据库一直是大公司的专利,市场被Oracle/DB2等企业数据库牢牢把持。但是随着互联网的崛起、开源社区的发展,上世纪九十年代MySQL10的发布,标志着关系型数据库的领域社区终于有可选择的方案。
MySQL
第一个介绍的单机RDBMS就是MySQL。相信大多数朋友都已经对MySQL非常熟悉,基本上MySQL的成长史就是互联网的成长史。我接触的第一个MySQL版本是MySQL40,到后来的MySQL55更是经典——基本所有的互联网公司都在使用。MySQL也普及了「可插拔」引擎这一概念,针对不同的业务场景选用不同的存储引擎是MySQLtuning的一个重要的方式。比如对于有事务需求的场景使用InnoDB;对于并发读取的场景MyISAM可能比较合适;但是现在我推荐绝大多数情况还是使用InnoDB,毕竟56后已经成为了官方的默认引擎。大多数朋友都基本知道什么场景适用MySQL(几乎所有需要持久化结构化数据的场景),我就不赘述了。
另外值得一提的是MySQL56中引入了多线程复制和GTID,使得故障恢复和主从的运维变得比较方便。另外,57(目前处于GA版本)是MySQL的一个重大更新,主要是读写性能和复制性能上有了长足的进步(在56版本中实现了SCHEMA级别的并行复制,不过意义不大,倒是MariaDB的多线程并行复制大放异彩,有不少人因为这个特性选择MariaDB。MySQL57MTS支持两种模式,一种是和56一样,另一种则是基于binloggroupcommit实现的多线程复制,也就是MASTER上同时提交的binlog在SLE端也可以同时被apply,实现并行复制)。如果有单机数据库技术选型的朋友,基本上只需要考虑57或者MariaDB就好了,而且56、57由Oracle接手后,性能和稳定性上都有了明显的提升。
PostgreSQL
PostgreSQL的历史也非常悠久,其前身是UCB的Ingres,主持这个项目的MichaelStronebraker于2023年获得图灵奖。后来项目更名为Post-Ingres,项目基于BSDlicense下开源。1995年几个UCB的学生为Post-Ingres开发了SQL的接口,正式发布了PostgreSQL95,随后一步步在开源社区中成长起来。和MySQL一样,PostgreSQL也是一个单机的关系型数据库,但是与MySQL方便用户过度扩展的SQL文法不一样的是,PostgreSQL的SQL支持非常强大,不管是内置类型、JSON支持、GIS类型以及对于复杂查询的支持,PL/SQL等都比MySQL强大得多,而且从代码质量上来看,PostgreSQL的代码质量是优于MySQL的,另外相对于MySQL57以前的版本,PostgreSQL的SQL优化器比MySQL强大很多,几乎所有稍微复杂的查询PostgreSQL的表现都优于MySQL。
从近几年的趋势上来看,PostgreSQL的势头也很强劲,我认为PostgreSQL的不足之处在于没有MySQL那样强大的社区和群众基础。MySQL经过那么多年的发展,积累了很多的运维工具和最佳实践,但是PostgreSQL作为后起之秀,拥有更优秀的设计和更丰富的功能。电脑培训发现PostgreSQL9以后的版本也足够稳定,在做新项目技术选型的时候,是一个很好的选择。另外也有很多新的数据库项目是基于PostgreSQL源码的基础上进行二次开发,比如Greenplum等。
按国际上通用的分类方法,数据库分为以下三大类:
1、参考数据库(Reference
databases),是能指引用户到另一信息源获取原文或其他细节的数据库;
2、源数据库(Source
databases),指能直接提供所需原始资料或具体数据的数据库。;
3、混合型数据库(Mixed
databases),能同时存贮多种类型数据的数据库。
按数据结构来分类,有三种:
1、层次式数据库
2、网络式数据库
3、关系式数据库
不完全是
■关系数据库 facts and information
关系数据库是建立在集合代数基础上,应用数学方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
关系模型由关系数据结构、关系 *** 作集合、关系完整性约束三部分组成。
全关系系统十二准则
全关系系统应该完全支持关系模型的所有特征。关系模型的奠基人EFCodd具体地给出了全关系系统应遵循的基本准则。
;''准则0'' : 一个关系形的关系数据库系统必须能完全通过它的关系能力来管理数据库。
;''准则1'' 信息准则 : 关系数据库系统的所有信息都应该在逻辑一级上用表中的值这一种方法显式的表示。
;''准则2'' 保证访问准则 : 依靠表名、主码和列名的组合,保证能以逻辑方式访问关系数据库中的每个数据项。
;''准则3'' 空值的系统化处理 : 全关系的关系数据库系统支持空值的概念,并用系统化的方法处理空值。
;''准则4'' 基于关系模型的动态的联机数据字典 : 数据库的描述在逻辑级上和普通数据采用同样的表述方式。
;''准则5'' 统一的数据子语言 :
一个关系数据库系统可以具有几种语言和多种终端访问方式,但必须有一种语言,它的语句可以表示为严格语法规定的字符串,并能全面的支持各种规则。
;''准则6'' 视图更新准则 : 所有理论上可更新的视图也应该允许由系统更新。
;''准则7'' 高级的插入、修改和删除 *** 作 : 系统应该对各种 *** 作进行查询优化。
;''准则8'' 数据的物理独立性 : 无论数据库的数据在存储表示或存取方法上作任何变化,应用程序和终端活动都保持逻辑上的不变性。
;''准则9'' 数据逻辑独立性 : 当对基本关系进行理论上信息不受损害的任何改变时,应用程序和终端活动都保持逻辑上的不变性。
;''准则10'' 数据完整的独立性 : 关系数据库的完整性约束条件必须是用数据库语言定义并存储在数据字典中的。
;''准则11'' 分布独立性 : 关系数据库系统在引入分布数据或数据重新分布时保持逻辑不变。
;''准则12'' 无破坏准则 : 如果一个关系数据库系统具有一个低级语言,那么这个低级语言不能违背或绕过完整性准则。
■实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务处理。实时数据库技术是实时系统和数据库技术相结合的产物,研究人员希望利用数据库技术来解决实时系统中的数据管理问题,同时利用实时技术为实时数据库提供时间驱动调度和资源分配算法。然而,实时数据库并非是两者在概念、结构和方法上的简单集成。需要针对不同的应用需求和应用特点,对实时数据模型、实时事务调度与资源分配策略、实时数据查询语言、实时数据通信等大量问题作深入的理论研究。实时数据库系统的主要研究内容包括:
实时数据库模型
实时事务调度:包括并发控制、冲突解决、死锁等内容
容错性与错误恢复
访问准入控制
内存组织与管理
I/O与磁盘调度
主内存数据库系统
不精确计算问题
放松的可串行化问题
实时SQL
实时事务的可预测性
研究现状与发展实时数据库系统最早出现在1988年3月的ACM SIGMOD Record的一期专刊中。随后,一个成熟的研究群体逐渐出现,这标志着实时领域与数据库领域的融合,标志着实时数据库这个新兴研究领域的确立。此后,出现了大批有关实时数据库方面的论文和原型系统。人机交互技术与智能信息处理实验室实时数据库小组一直致力于实时系统、实时智能、实时数据库系统及相关技术的研究与开发,并取得了一定的成绩。
mysql数据类型之一字符型VARCHARVSCHARVARCHAR型和CHAR型数据的这个差别是细微的,但是非常重要。他们都是用来储存字符串长度小于255的字符。假如你向一个长度为四十个字符的VARCHAR型字段中输入数据BillGates。当你以后从这个字段中取出此数据时,你取出的数据其长度为十个字符——字符串BillGates的长度。现在假如你把字符串输入一个长度为四十个字符的CHAR型字段中,那么当你取出数据时,所取出的数据长度将是四十个字符。字符串的后面会被附加多余的空格。当你建立自己的站点时,你会发现使用VARCHAR型字段要比CHAR型字段方便的多。使用VARCHAR型字段时,你不需要为剪掉你数据中多余的空格而 *** 心。VARCHAR型字段的另一个突出的好处是它可以比CHAR型字段占用更少的内存和硬盘空间。当你的数据库很大时,这种内存和磁盘空间的节省会变得非常重要
MySQL数据类型之二文本型TEXT使用文本型数据,你可以存放超过二十亿个字符的字符串。当你需要存储大串的字符时,应该使用文本型数据。注意文本型数据没有长度,而上一节中所讲的字符型数据是有长度的。一个文本型字段中的数据通常要么为空,要么很大。当你从HTMLform的多行文本编辑框(TEXTAREA)中收集数据时,你应该把收集的信息存储于文本型字段中。但是,无论何时,只要你能避免使用文本型字段,你就应该不适用它。文本型字段既大且慢,滥用文本型字段会使服务器速度变慢。文本型字段还会吃掉大量的磁盘空间。一旦你向文本型字段中输入了任何数据(甚至是空值),就会有2K的空间被自动分配给该数据。除非删除该记录,否则你无法收回这部分存储空间。
关系型数据库最典型的数据结构是表,由二维表及其之间的联系所组成的一个数据组织。
优点:
1、易于维护:都是使用表结构,格式一致;
2、使用方便:SQL语言通用,可用于复杂查询;
3、复杂 *** 作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。
缺点:
1、读写性能比较差,尤其是海量数据的高效率读写;
2、固定的表结构,灵活度稍欠;
3、高并发读写需求,传统关系型数据库来说,硬盘I/O是一个很大的瓶颈。
二、非关系型数据库
非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。
优点:
1、格式灵活:存储数据的格式可以是key,value形式、文档形式、形式等等,文档形式、形式等等,使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。
2、速度快:nosql可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘;
3、高扩展性;
4、成本低:nosql数据库部署简单,基本都是开源软件。
缺点:
1、不提供sql支持,学习和使用成本较高;
2、无事务处理;
3、数据结构相对复杂,复杂查询方面稍欠。
非关系型数据库的分类和比较:
1、文档型
2、key-value型
3、列式数据库
4、图形数据库
以上就是关于数据库中数据的分类存储用哪种方式比较好全部的内容,包括:数据库中数据的分类存储用哪种方式比较好、数据库的种类有哪些、数据库分为三种类型 数据误差分为哪些类型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)