如何在linux中查询redis的数据

如何在linux中查询redis的数据,第1张

1、执行如图是命令,查看redis服务是否启动。

2、执行命令“redis-cli”进入redis命令行界面。

3、执行命令“dbsize”。

4、执行命令“flushall”刷新清除。

5、执行命令“ keys  ”进行验证redis是否为空,可以看到redi数据

因为Redis具有在数据存储中快速读写数据的能力,所以它比关系型数据库更具有性能优势。但是,关键值数据存储是简单的;它们没有一个类似于

SQL的查询语言或者结构化的数据模型。相反,它们有一个把键值作为与数值相关的标识符来使用的简单字典或哈希模式。管理员使用这些键来进行数值的存储和

检索。

键值存储是简单快速的,它可用于实现丰富数据模型和关系型数据库查询功能的良好匹配。但是,有时候还是使用键值与关系型数据库的组合为好。此外,还有很多商业支持的键值数据库,包括Redis、Riak和Areospike等。

为了运行一个优化热门查询性能的Redis缓存,首先应确定你希望缓存的查询结果。其中,应重点关注最常用的和最耗时的查询,然后确定应缓冲查询中的数据。为简便起见,缓存查询返回的所有列值。

为键值定义一个命名约定;可以使用行主键和列名的组合来构造密钥。例如,其主键ID为 198278的 产品描述可以‘198278:descry’的键值进行存储。确保你的命名规则是简单和规则驱动的,以便于使用最少的代码来实现键的程序化创建。

接下来,确定是运行Redis缓存作为自助管理服务还是运行亚马逊的ElastiCache。运行用户自己的Redis实例将赋予管理人员对缓存的完全控制权。而这一控制权意味着灵活性,例如当有超出容量的情况出现时,管理人员有使用现有保留实例的权力。

此外,当用户想要把应用程序从一家云计算供应商迁移至另一家时,他们会发现完整的管理控制权限是非常有用的。

如果用户选择运行一个自助管理的Redis实例,可下载服务器。Redis的客户端支持30种以上编程语言——从Java和Python到Prolog和Smalltalk。

已经使用AWS环境的企业可能会想要使用ElastiCache。除了诸如托管打补丁这样的优点之外,亚马逊ElastiCache支持一系列高速

缓存优化的节点类型,具体包括从中型到2X的m3节点、从大型到8X的r3节点以及从微型到中型的t2节点。ElastiCache还支持一些上一代的节

点类型,例如选择m1、m2、t1和c1节点。

ElastiCache还支持多个可用区。如果有一个节点发生故障,一个读 *** 作复制节点将取代故障节点。任何需要确保应用程序运行的DNS变更都是

自动完成的,同时会创建一个新的读 *** 作副本。ElastiCache允许基于单位时间使用率的按需定价模式,以及一年期或三年期预付费的节点使用条款。完

整定价清单可以在这里找到。

如果使用Redis缓存和亚马逊ElastiCache,那么就可以从AWS管理控制台启动一个集群。除了设置Redis服务外,还需要修改应用程

序代码以便于能够使用缓存。一个常用的模式就是,检查缓存中是否存在有一个键值,如果没有就执行一个SQL查询以检索数据,然后将其存储在缓存中。当缓冲

存满时,可以配置Redis删除旧数据,这样就不需要用户使用专门的代码来处理缓存存满的情况了。

1、redis中的每一个数据库,都由一个redisDb的结构存储。其中,redisDbid存储着redis数据库以整数表示的号码。redisDbdict存储着该库所有的键值对数据。redisDbexpires保存着每一个键的过期时间。

2、当redis服务器初始化时,会预先分配16个数据库(该数量可以通过配置文件配置),所有数据库保存到结构redisServer的一个成员redisServerdb数组中。当我们选择数据库selectnumber时,程序直接通过redisServerdb[number]来切换数据库。有时候当程序需要知道自己是在哪个数据库时,直接读取redisDbid即可。

3、既然我们知道一个数据库的所有键值都存储在redisDbdict中,那么我们要知道如果找到key的位置,就有必要了解一下dict的结构了:

typedefstructdict{

//特定于类型的处理函数

dictTypetype;

//类型处理函数的私有数据

voidprivdata;

//哈希表(2个)

dicththt[2];

//记录rehash进度的标志,值为-1表示rehash未进行

intrehashidx;

//当前正在运作的安全迭代器数量

intiterators;

}dict;

由上述的结构可以看出,redis的字典使用哈希表作为其底层实现。dict类型使用的两个指向哈希表的指针,其中0号哈希表(ht[0])主要用于存储数据库的所有键值,而1号哈希表主要用于程序对0号哈希表进行rehash时使用,rehash一般是在添加新值时会触发,这里不做过多的赘述。所以redis中查找一个key,其实就是对进行该dict结构中的ht[0]进行查找 *** 作。

4、既然是哈希,那么我们知道就会有哈希碰撞,那么当多个键哈希之后为同一个值怎么办呢?redis采取链表的方式来存储多个哈希碰撞的键。也就是说,当根据key的哈希值找到该列表后,如果列表的长度大于1,那么我们需要遍历该链表来找到我们所查找的key。当然,一般情况下链表长度都为是1,所以时间复杂度可看作o(1)。

二、当redis拿到一个key时,如果找到该key的位置。

了解了上述知识之后,我们就可以来分析redis如果在内存找到一个key了。

1、当拿到一个key后,redis先判断当前库的0号哈希表是否为空,即:if(dict-

2、判断该0号哈希表是否需要rehash,因为如果在进行rehash,那么两个表中者有可能存储该key。如果正在进行rehash,将调用一次_方法,_用于对数据库字典、以及哈希键的字典进行被动rehash,这里不作赘述。

3、计算哈希表,根据当前字典与key进行哈希值的计算。

4、根据哈希值与当前字典计算哈希表的索引值。

5、根据索引值在哈希表中取出链表,遍历该链表找到key的位置。一般情况,该链表长度为1。

6、当ht[0]查找完了之后,再进行了次rehash判断,如果未在rehashing,则直接结束,否则对ht[1]重复345步骤。

到此我们就找到了key在内存中的位置了。

非常感谢您的提问。当微服务连接不上Redis时,会根据代码实现的逻辑来决定是否直接访问数据库。一般来说,如果代码中没有对Redis连接失败的情况进行处理,那么微服务会直接访问数据库。但是,如果代码中有对Redis连接失败的情况进行了处理,那么就会根据处理逻辑来决定是否直接访问数据库。因此,我们建议在代码中对Redis连接失败的情况进行处理,以确保系统的稳定性和可靠性。同时,我们也建议在系统设计时,考虑到Redis的可靠性和高可用性,采用集群或者主从复制等方式来保证Redis的可用性。希望我的回答能够帮到您,如果您还有其他问题,欢迎继续提问。

大致为两种措施:

一、脚本同步:

1、自己写脚本将数据库数据写入到redis/memcached。

2、这就涉及到实时数据变更的问题(mysqlrowbinlog的实时分析),binlog增量订阅Alibaba的canal,以及缓存层数据丢失/失效后的数据同步恢复问题。

二、业务层实现:

1、先读取nosql缓存层,没有数据再读取mysql层,并写入数据到nosql。

2、nosql层做好多节点分布式(一致性hash),以及节点失效后替代方案(多层hash寻找相邻替代节点),和数据震荡恢复了。

redis实现数据库缓存的分析:

对于变化频率非常快的数据来说,如果还选择传统的静态缓存方式(Memocached、FileSystem等)展示数据,可能在缓存的存取上会有很大的开销,并不能很好的满足需要,而Redis这样基于内存的NoSQL数据库,就非常适合担任实时数据的容器。

但是往往又有数据可靠性的需求,采用MySQL作为数据存储,不会因为内存问题而引起数据丢失,同时也可以利用关系数据库的特性实现很多功能。所以就会很自然的想到是否可以采用MySQL作为数据存储引擎,Redis则作为Cache。

MySQL到Redis数据复制方案,无论MySQL还是Redis,自身都带有数据同步的机制,比较常用的MySQL的Master/Slave模式,就是由Slave端分析Master的binlog来实现的,这样的数据复制其实还是一个异步过程,只不过当服务器都在同一内网时,异步的延迟几乎可以忽略。那么理论上也可用同样方式,分析MySQL的binlog文件并将数据插入Redis。

因此这里选择了一种开发成本更加低廉的方式,借用已经比较成熟的MySQLUDF,将MySQL数据首先放入Gearman中,然后通过一个自己编写的PHPGearmanWorker,将数据同步到Redis。比分析binlog的方式增加了不少流程,但是实现成本更低,更容易 *** 作。

redis在启动之后,从数据库加载数据。

读请求:

不要求强一致性的读请求,走redis,要求强一致性的直接从mysql读取

写请求:

数据首先都写到数据库,之后更新redis(先写redis再写mysql,如果写入失败事务回滚会造成redis中存在脏数据)

在并发不高的情况下,读 *** 作优先读取redis,不存在的话就去访问MySQL,并把读到的数据写回Redis中;写 *** 作的话,直接写MySQL,成功后再写入Redis(可以在MySQL端定义CRUD触发器,在触发CRUD *** 作后写数据到Redis,也可以在Redis端解析binlog,再做相应的 *** 作)

在并发高的情况下,读 *** 作和上面一样,写 *** 作是异步写,写入Redis后直接返回,然后定期写入MySQL

1当更新数据时,如更新某商品的库存,当前商品的库存是100,现在要更新为99,先更新数据库更改成99,然后删除缓存,发现删除缓存失败了,这意味着数据库存的是99,而缓存是100,这导致数据库和缓存不一致。

解决方法:

这种情况应该是先删除缓存,然后在更新数据库,如果删除缓存失败,那就不要更新数据库,如果说删除缓存成功,而更新数据库失败,那查询的时候只是从数据库里查了旧的数据而已,这样就能保持数据库与缓存的一致性。

2在高并发的情况下,如果当删除完缓存的时候,这时去更新数据库,但还没有更新完,另外一个请求来查询数据,发现缓存里没有,就去数据库里查,还是以上面商品库存为例,如果数据库中产品的库存是100,那么查询到的库存是100,然后插入缓存,插入完缓存后,原来那个更新数据库的线程把数据库更新为了99,导致数据库与缓存不一致的情况

解决方法:

遇到这种情况,可以用队列的去解决这个问,创建几个队列,如20个,根据商品的ID去做hash值,然后对队列个数取摸,当有数据更新请求时,先把它丢到队列里去,当更新完后在从队列里去除,如果在更新的过程中,遇到以上场景,先去缓存里看下有没有数据,如果没有,可以先去队列里看是否有相同商品ID在做更新,如果有也把查询的请求发送到队列里去,然后同步等待缓存更新完成。

这里有一个优化点,如果发现队列里有一个查询请求了,那么就不要放新的查询 *** 作进去了,用一个while(true)循环去查询缓存,循环个200MS左右,如果缓存里还没有则直接取数据库的旧数据,一般情况下是可以取到的。

1、读请求时长阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时间内返回,该解决方案最大的风险在于可能数据更新很频繁,导致队列中挤压了大量的更新 *** 作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库,像遇到这种情况,一般要做好足够的压力测试,如果压力过大,需要根据实际情况添加机器。

2、请求并发量过高

这里还是要做好压力测试,多模拟真实场景,并发量在最高的时候QPS多少,扛不住就要多加机器,还有就是做好读写比例是多少

3、多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新 *** 作,以及执行缓存更新 *** 作的请求,都通过nginx服务器路由到相同的服务实例上

4、热点商品的路由问题,导致请求的倾斜

某些商品的读请求特别高,全部打到了相同的机器的相同丢列里了,可能造成某台服务器压力过大,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是很大,但是确实有可能某些服务器的负载会高一些。

img

搜索微信号(ID:芋道源码),可以获得各种 Java 源码解析。

并且,回复书籍后,可以领取笔者推荐的各种 Java 从入门到架构的书籍。

通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。

因为Redis的性能十分优越,可以支持每秒十几万此的读/写 *** 作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:

缓存

判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写 *** 作多么?数据大小?

我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意缓存穿透的问题。

缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行 *** 作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。

高速读写

常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。

高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。

这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。

所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。

我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。

Redis和MySQL的应用场景是不同的。

通常来说,没有说用Redis就不用MySQL的这种情况。

因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。

和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)

那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。

我们先来了解一下关系型数据库和非关系型数据库的区别吧。

1存储方式

关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

2存储结构

关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。

3存储规范

关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个 *** 作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

4存储扩展

这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中, *** 作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

5查询方式

关系型数据库通过结构化查询语言来 *** 作数据库(就是我们通常说的SQL)。SQL支持数据库CURD *** 作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元 *** 作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询 *** 作,而Nosql更简单更精确的数据访问模式。

6事务

关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。

7性能

关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。

8授权方式

大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。

所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。

查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。

而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。

即使Redis的读取效率再高,我们也没法用。

但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。

例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。

所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。

个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。

为什么?

因为redis是内存型数据库啊,是放在内存里的。

设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!

使用场景

Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。

例如facebook,使用Memcached来作为其会话缓存。

总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。

题主你错了,不是用redis代替MySQL,而是引入redis来优化。

BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。

如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。

我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过>

以上就是关于如何在linux中查询redis的数据全部的内容,包括:如何在linux中查询redis的数据、如何用Redis缓存改善数据库查询性能、redis多个数据库内存怎么分配的(redis一个库能存多少数据)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9808332.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存