大数据有什么学习路线

大数据有什么学习路线,第1张

很多初学者在萌生向大数据方向发展的想法之后,不免产生一些疑问,应该怎样入门?应该学习哪些技术?学习路线又是什么?

所有萌生入行的想法与想要学习Java的同学的初衷是一样的。岗位非常火,就业薪资比较高,,前景非常可观。基本都是这个原因而向往大数据,但是对大数据却不甚了解。

如果你想学习,那么首先你需要学会编程,其次你需要掌握数学,统计学的知识,最后融合应用,就可以想在数据方向发展,笼统来说,就是这样的。但是仅仅这样并没有什么帮助。

现在你需要问自己几个问题:对于计算机/软件,你的兴趣是什么?是计算机专业,对 *** 作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。你自己的专业又是什么?

如果你是金融专业,你可以学习,因为这结合起来你自己的专业,将让你在只有你专业知识的竞争者之中脱颖而出,毕竟现在AI+已经涉及到金融行业了。

说了这么多,无非就是想告诉你,大数据的三个大的发展方向:平台搭建/优化/运维/监控;大数据开发/ 设计/ 架构;数据分析/挖掘。

请不要问哪个容易,只能说能挣钱的都不简单。

大数据现在这么火,想往大数据方面发展,但是英文、数学不好的可以吗?? 学习大数据该学哪些技术??大数据和程序员比哪个要好学点??等等。。。很多人学大数据的原因就是大数据找工作好找,薪资很高,,当然,为了这个原因也是可以的,毕竟这个时代就业压力确实很大,为了一个好的工作学一门技术,,但是我想问下你,你的专业是什么呢??对于计算机/软件,你的兴趣是什么?是计算机专业,对 *** 作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。

其实说这些不是为了说明大数据有多难,只是告诉你这就是大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。。这三个方面没有哪个容易学些、哪个薪资高些、哪个发展前景好些。。。

现如今大数据开源框架也是越来越多,举几个常用的例子:

文件存储:Hadoop HDFS、Tachyon、KFS

流式、实时计算:Storm、Spark Streaming、S4、Heron

K-V、NOSQL数据库:HBase、Redis、MongoDB

资源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式协调服务:Zookeeper

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

数据挖掘、机器学习:Mahout、Spark MLLib

数据同步:Sqoop

任务调度:Oozie

上面有30多种框架了吧,哈哈,是不是有点慌了,虽然有这么多框架,别说全部精通了,就算是全会用的,估计现在也没有几个,就要看你在三个方面往哪个方面发展了。就拿第二个来说(开发/设计、架构),且先听听我的建议:

一、初识hadoop

Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚以下是什么:

Hadoop 10、Hadoop 20

MapReduce、HDFS

NameNode、DataNode

JobTracker、TaskTracker

Yarn、ResourceManager、NodeManager

自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。

建议先使用安装包命令行安装,不要使用管理工具安装。

另外:Hadoop10知道它就行了,现在都用Hadoop 20

二、更高效的WordCount

首先,你得先学习SQL,访问、查询数据库的基本语言还是要懂的。。然后SQL On Hadoop之Hive,Hive是数据仓库工具,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库的特点:数据全(海量)、稳定;所谓稳定,比如数据库的数据经常要更新,而数据仓库的数据是不会被更新,只会被查询,所以说Hive适合做数据仓库。最后就是了解hive的工作原理,学会Hive的工作命令。

三、把别处的数据搞到Hadoop上

四、把Hadoop上的数据搞到别处去

五、实例分析

六、实时数据

七、更新查询数据

八、高大上的机器学习

完成了第一、二,说明你已经快步入大数据的行列了,写的不好也请多多包涵。

详细了解 可登录网址:网页链接

大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。

首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够 *** 作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。

1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。

2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。

3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;

接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。

1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。

2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。

第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;

1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;

2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从30开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。

最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。

1、PowerPoint软件:大部分人都是用PPT写报告。

2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;

3、Swiff Chart软件:制作图表的软件,生成的是Flash。

分享大数据学习路线:

第一阶段为JAVASE+MYSQL+JDBC

主要学习一些Java语言的概念,如字符、bai流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关 *** 作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。

第二阶段为分布式理论简介

主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。

第三阶段为数据存储与计算(离线场景)

主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(05T)、数据同步datax(05T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。

第四部分为数仓建设

主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、多维数据模型处理kylin(35T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行多维分析等;

第五阶段为分布式计算引擎

主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、kudu,并通过某p2p平台项目实现spark多数据源读写。

第六阶段为数据存储与计算(实时场景)

主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。

第七阶段为数据搜索

主要讲解elasticsearch,包括全文搜索技术、ES安装 *** 作、index、创建索引、增删改查、索引、映射、过滤等。

第八阶段为数据治理

主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。

第九阶段为BI系统

主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表 *** 作以及数据探索分析。

第十阶段为数据挖掘

主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

以上就是关于大数据有什么学习路线全部的内容,包括:大数据有什么学习路线、小白想转行做大数据,怎么入行、大数据分析工具有哪些,好用的有吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9808344.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存