pandasreadsql懒加载

pandasreadsql懒加载,第1张

Pandas常用作数据分析工具库以及利用其自带的DataFrame数据类型做一些灵活的数据转换、计算、运算等复杂 *** 作,但都是建立在我们获取数据源的数据之后。因此作为读取数据源信息的接口函数必然拥有其强大且方便的能力,在读取不同类源或是不同类数据时都有其对应的read函数可进行先一步处理,这会减少我们相当大的一部分数据处理 *** 作。每一个read()函数,作为一名数据分析师我个人认为都应该掌握且熟悉它对应的参数,相对应的read()函数博主已有两篇文章详细解读了read_json和read_excel:

Pandas处理JSON文件read_json()一文详解+代码展示

Pandas中read_excel函数参数使用详解+实例代码

pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这么说你可能无法从感性上认识它,举个例子,你大概用过Excel,而它也是一种数据组织和呈现的方式,简单说就是表格,而在在pandas中用DataFrame组织数据,如果你不print DataFrame,你看不到这些数据,下面我们来看看DataFrame是如何使用的。

首先是引入pandas和numpy,这是经常配合使用的两个包,pandas依赖于numpy,引入以后我们可以直接使用np/pd来表示这个两个模块

先创建一个时间索引,所谓的索引(index)就是每一行数据的id,可以标识每一行的唯一值

为了快速入门,我们看一下如何创建一个6X4的数据:randn函数用于创建随机数,参数表示行数和列数,dates是上一步创建的索引列

我们还可以使用字典来创建数据框,例如创建一个列名为A的数据框,索引是自动创建的整数

这又是一个字典创建DataFrame的例子

假如字典内的数据长度不同,以最长的数据为准,比如B列有4行:

可以使用dtypes来查看各行的数据格式

接着看一下如何查看数据框中的数据,看一下所有的数据

使用head查看前几行数据(默认是前5行),不过你可以指定前几行

查看前三行数据

使用tail查看后5行数据

查看数据框的索引

查看列名用columns

查看数据值,用values

查看描述性统计,用describe

使用type看一下输出的描述性统计是什么样的数据类型——DataFrame数据

使用T来转置数据,也就是行列转换

对数据进行排序,用到了sort,参数可以指定根据哪一列数据进行排序。

好了,这篇入门教程到这里,后面还有很多,希望有志同道合的朋友一起交流学习,有什么说的不对的地方,请批评指正。

下面是用python进行数据分析的一般步骤:

一:数据抽取

从外部源数据中获取数据

保存为各种格式的文件、数据库

使用Scrapy爬虫等技术

二:数据加载

从数据库、文件中提取数据,变成DataFrame对象

pandas库的文件读取方法

三:数据处理

数据准备:

对DataFrame对象(多个)进行组装、合并等 *** 作

pandas库的 *** 作

数据转化:

类型转化、分类(面元等)、异常值检测、过滤等

pandas库的 *** 作

数据聚合:

分组(分类)、函数处理、合并成新的对象

pandas库的 *** 作

四:数据可视化

将pandas的数据结构转化为图表的形式

matplotlib库

五:预测模型的创建和评估

数据挖掘的各种算法:

关联规则挖掘、回归分析、聚类、分类、时序挖掘、序列模式挖掘等

六:部署(得出结果)

从模型和评估中获得知识

知识的表示形式:规则、决策树、知识基、网络权值

更多技术请关注python视频教程。

你在服务器上百直接查询,只是读取一次数据到内存中。

你现度在的代码,首先要从数据库读出,然后要写入df,df可以看做一个内存知数据道库,写入需要做一些相关的处理,例如索引之版类的。

然后又要从df读出,再写入excel,这个步骤是权写入磁盘,也是花费时间最多的。

其实吧, 一分钟10W条数据不能算太快,10秒10W条还差不多。 可以研究一下线程+进程来处理, 或者协程+进程。处理速度肯定能让你喊一声“卧槽!” 哈哈。

言归正传, 你说的别的MySQL是不是远程的,通过ip来连接的哈, 如果是的话那就可以理解了。 每次连接一次数据库,都有一个网络延迟的,2台电脑之间距离越远,这个延迟就越高,而每次导入数据的时间必须要加上这个延迟的时间的, 而本地测试的时候因为连接数据库的时间延迟基本可以忽略不计,所以速度要比连接远程数据库要快很多很多。

最后, 如果想要解决这个问题的话,要么把业务数据库移到本地,去掉时间延迟。 要么就用我上面说的线程+进程 或者 协程+进程的方式提高程序效率。如果无法把业务数据库移到本地的话, 我非常推荐后者,成本也就是多学一点东西而已, 但以后可以省下非常多的时间, 效率为王嘛~

pandas是Python中一种常用的数据处理库,它可以轻松地进行数据清洗、转换、分析和可视化。pandas可以处理大规模数据集,最多可以处理数百万行的数据,这使得它成为数据科学家和数据分析师经常使用的工具之一。通过使用DataFrame和Series对象,pandas可以高效地进行多个 *** 作,例如索引、筛选、聚合和组合等。此外,pandas还支持在多种格式(CSV、Excel、SQL数据库等)之间读取和写入数据,使得数据转换和集成变得更加容易

以上就是关于pandasreadsql懒加载全部的内容,包括:pandasreadsql懒加载、如何用python读取mysql的数据,再进行机器学习建模转化为dateframe吗然后咋处理、python数据分析的一般步骤是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9835127.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存