科蓝软件数据库比宇信科技数据库谁强

科蓝软件数据库比宇信科技数据库谁强,第1张

科蓝软件和宇信科技都是国内知名的软件公司,都提供数据相关的产品和服务。但是哪个数据库更优秀,取决于使用它的实际需求和应用场景。

科蓝软件的产品包括云计算、大数据和数据库等,其主打数据库产品是超级数据库,该数据库是高性能、可扩展、高可靠性的关系型数据库,被广泛应用在金融、电信、运营商、能源等领域。其具有在高并发并行读写场景下表现优异的特点。此外,它还有高级的安全性、可靠性和易运维性等特性,而且其支持 SQL92 标准和 Oracle PL/SQL 标准的语法和函数。

宇信科技的数据库产品包括服务器数据库、容器化数据库和云上数据库等,主打数据库产品是速达数据库。该数据库具有高性能、高可靠性的特性,支持海量数据存储和在线扩容,同时还提供多样化的业务数据处理服务。此外,它还具有多层次的安全机制和优质的售后服务支持,可以满足企业大规模的数据处理需求。

因此,需要根据不同的应用环境和具体的功能需求来选择合适的数据库产品。在选择时应该考虑因素包括:性能、可靠性、安全性、易用性、生态支持等。建议进行比较试用后再进行决策。

常见的非关系型数据库有:1、mongodb;2、cassandra;3、redis;4、hbase;5、neo4j。其中mongodb是非常著名的NoSQL数据库,它是一个面向文档的开源数据库。

常见的几种非关系型数据库:

1、MongoDB

MongoDB是最著名的NoSQL数据库。它是一个面向文档的开源数据库。MongoDB是一个可伸缩和可访问的数据库。它在c++中。MongoDB同样可以用作文件系统。在MongoDB中,JavaScript可以作为查询语言使用。通过使用sharding MongoDB水平伸缩。它在流行的JavaScript框架中非常有用。

人们真的很享受分片、高级文本搜索、gridFS和map-reduce功能。惊人的性能和新特性使这个NoSQL数据库在我们的列表中名列第一。

特点:提供高性能;自动分片;运行在多个服务器上;支持主从复制;数据以JSON样式文档的形式存储;索引文档中的任何字段;由于数据被放置在碎片中,所以它具有自动负载平衡配置;支持正则表达式搜索;在失败的情况下易于管理。

优点:易于安装MongoDB;MongoDB Inc为客户提供专业支持;支持临时查询;高速数据库;无模式数据库;横向扩展数据库;性能非常高。

缺点:不支持连接;数据量大;嵌套文档是有限的;增加不必要的内存使用。

2、Cassandra

Cassandra是Facebook为收件箱搜索开发的。Cassandra是一个用于处理大量结构化数据的分布式数据存储系统。通常,这些数据分布在许多普通服务器上。您还可以添加数据存储容量,使您的服务保持在线,您可以轻松地完成这项任务。由于集群中的所有节点都是相同的,因此不需要处理复杂的配置。

Cassandra是用Java编写的。Cassandra查询语言(CQL)是查询Cassandra数据库的一种类似sql的语言。因此,Cassandra在最佳开源数据库中排名第二。Facebook、Twitter、思科(Cisco)、Rackspace、eBay、Twitter、Netflix等一些最大的公司都在使用Cassandra。

特点:线性可伸缩;;保持快速响应时间;支持原子性、一致性、隔离性和耐久性(ACID)等属性;使用Apache Hadoop支持MapReduce;分配数据的最大灵活性;高度可伸缩;点对点架构。

优点:高度可伸缩;无单点故障;Multi-DC复制;与其他基于JVM的应用程序紧密集成;更适合多数据中心部署、冗余、故障转移和灾难恢复。

缺点:对聚合的有限支持;不可预知的性能;不支持特别查询。

3、Redis

Redis是一个键值存储。此外,它是最著名的键值存储。Redis支持一些c++、PHP、Ruby、Python、Perl、Scala等等。Redis是用C语言编写的。此外,它是根据BSD授权的。

特点:自动故障转移;将其数据库完全保存在内存中;事务;Lua脚本;将数据复制到任意数量的从属服务器;钥匙的寿命有限;LRU驱逐钥匙;支持发布/订阅。

优点:支持多种数据类型;很容易安装;非常快(每秒执行约11万组,每秒执行约81000次); *** 作都是原子的;多用途工具(在许多用例中使用)。

缺点:不支持连接;存储过程所需的Lua知识;数据集必须很好地适应内存。

4、HBase

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。

HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

5、neo4j

Neo4j被称为原生图数据库,因为它有效地实现了属性图模型,一直到存储层。这意味着数据完全按照白板的方式存储,数据库使用指针导航和遍历图。Neo4j有数据库的社区版和企业版。企业版包括Community Edition必须提供的所有功能,以及额外的企业需求,如备份、集群和故障转移功能。

特点:它支持唯一的约束;Neo4j支持完整的ACID(原子性、一致性、隔离性和持久性)规则;Java API: Cypher API和本机Java API;使用Apache Lucence索引;简单查询语言Neo4j CQL;包含用于执行CQL命令的UI: Neo4j Data Browser。

优点:容易检索其相邻节点或关系细节,无需连接或索引;易于学习Neo4j CQL查询语言命令;不需要复杂的连接来检索数据;非常容易地表示半结构化数据;大型企业实时应用程序的高可用性;简化的调优。

缺点:不支持分片

常用的数据库软件有:

1、Oracle

70年代一间名为Ampex的软件公司,正为中央情报局设计一套名叫Oracle的数据库,Ellison是程序员之一。Oracle是世界领先的信息管理软件开发商,因其复杂的关系数据库产品而闻名。Oracle数据库产品为财富排行榜上的前1000家公司所采用,许多大型网站、银行、证券、电信等都选用了Oracle系统。

2、SQLServer

SQLServer(StructuredQueryLanguageServer)是一个关系数据库管理系统(DBMS)。它最初是由MicrosoftSybase和Ashton-Tate三家公司共同开发的,于1988年推出了第一个OS/2版本。

在WindowsNT推出后,Microsoft与Sybase在SQLServer的开发上就分道扬镳了,Microsoft将SQLServer移植到WindowsNT系统上,专注于开发推广SQLServer的WindowsNT版本。

3、ACCESS

Aess是微软公司推出的基于Windows的桌面关系数据库管理系统(RDBMS,即RelationalDatabaseManagementSystem),是Office系列应用软件之一。

它提供了表、查询、窗体、报表、页、宏、模块7种用来建立数据库系统的对象;提供了多种向导、生成器、模板,把数据存储、数据查询、界面设计、报表生成等 *** 作规范化;为建立功能完善的数据库管理系统提供了方便,也使得普通用户不必编写代码,就可以完成大部分数据管理的任务。

4、DB2

IBM公司研制的一种关系型数据库系统。DB2主要应用于大型应用系统,具有较好的可伸缩性,可支持从大型机到单用户环境,应用于OS/2Windows等平台下。

DB2提供了高层次的数据利用性、完整性、安全性、可恢复性,以及小规模到大规模应用程序的执行能力,具有与平台无关的基本功能和SQL命令。

5、MySQL

MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQLAB公司。在2008年1月16号被Sun公司收购。

而2009年,SUN又被Oracle收购。对于Mysql的前途,没有任何人抱乐观的态度。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。

扩展资料:

VisualFoxPro原名FoxBase,最初是由美国FoxSoftware公司于1988年推出的数据库产品,在DOS上运行,与xBase系列兼容。

FoxPro是FoxBase的加强版,最高版本曾出过26。之后于1992年,FoxSoftware公司被Microsoft收购,加以发展,使其可以在Windows上运行,并且更名为VisualFoxPro。

FoxPro比FoxBASE在功能和性能上又有了很大的改进,主要是引入了窗口、按纽、列表框和文本框等控件,进一步提高了系统的开发能力。

1970 年,关系型数据库之父 EFCodd 发表《用于大型共享数据库的关系数据模型》论文,正式拉开数据库技术发展序幕。以 Oracle、DB2、SQL Server 为代表的三大商业数据库产品独占鳌头,随后涌现出 MySQL、PostgreSQL 等为代表的开源数据库 ,和以 Amazon RDS 等为代表的云数据库,拉开百花齐放的数据库新序幕。

我们知道,云计算十年为产业转型升级提供了 历史 性契机,但变革仍在进行,随着云计算的普及,数据库市场发生根本性改变,云厂商打破传统商业数据库的堡垒,成为数据库领域全新力量。其中以连续六年入选 Gartner 领导者象限的亚马逊云 科技 为代表,我们一起探讨:为什么亚马逊云 科技 能始终保持其创新性?纵观云原生时代下,亚马逊云 科技 数据库未来还有哪些更多的可能性?

01 面对四大数据库发展趋势,亚马逊云 科技 打造五大数据库理念

后疫情时代下,加速了不少行业的业务在线化和数字化运营,企业对数据价值挖掘的需求越发强烈,亚马逊云 科技 大中华区产品部总经理顾凡详细介绍其中四大趋势:

一是伴随互联网、移动互联网的发展,电商、视频、社交、出行等新应用场景的兴起,不仅数据量大,对数据实时性要求极高,传统关系型数据库无法满足需求,因此驱动云原生数据库的出现。

二是开源数据库的广泛应用。

三是应用程序现代化对数据库提出更高要求,期待数据库拥有更高的性能、可扩展性、可用性以及降低成本,让开发人员专注于核心业务的应用开发,不用关注和核心业务无关的代码。

四是软件架构历经 PC、互联网、移动互联网,再到如今的万物互联时代,其中的迭代和转型正在驱动数据库选型的变化。

在此四大趋势下,伴随企业的业务量越来越大、越来越复杂,对数据库的要求越来越高。亚马逊云 科技 洞察客户需求,在打造云上数据库产品时提出五大理念:

一是专库专用,极致性能;二是无服务器,敏捷创新;第三是全球架构,一键部署;第四是平滑迁移,加速上云;第五是 AI 赋能,深度集成。

02 历经真实锤炼,五大数据库理念,持续赋能企业数智转型

顾凡表示,随着数据爆炸式增长,微服务架构与 DevOps 愈发流行的今天,一个数据库打天下的时代已然过去。我们需要在不同的应用场景下,针对不同的数据类型和不同的数据访问特点,为开发者和企业提供专门构建的工具。

所以亚马逊云 科技 提出 第一个核心数据库理念:专库专用 。在此理念下,推出针对关系数据、键值数据、文档数据、内存数据、图数据、时许数据、分类账数据、宽列等专门构建数据库的产品家族。

这些数据库产品均经历过亚马逊内部核心业务的真实锤炼,成绩斐然:

亚马逊电商当年是 Oracle 的客户之一,随着亚马逊电商的应用重构和业务体量发展,亚马逊电商决定将业务迁移到亚马逊云 科技 里。100 多个团队参与这庞大的迁移工作中,将亚马逊电商采购、目录管理、订单执行、广告、财务系统、钱包、视频流等关键系统全部从 Oracle 迁出来。2019 年,亚马逊将存储近 7500 个Oracle 数据库中的 75 PB 内部数据迁移到多项亚马逊云 科技 的数据库服务中,包括 Amazon DynamoDB、Amazon Aurora、Amazon ElastiCache,于是亚马逊电商成为亚马逊云 科技 在全球的“第一大客户”。

从 Oracle 切换到亚马逊云 科技 后,亚马逊电商节省了 60% 成本,面向消费者端的应用程序延迟降低 40%,数据库管理支出减少 70%。

以被誉为“亚马逊云 科技 历史 上用户数量增速最快的云服务”Amazon Aurora 为例,其拥有科媲美高端商业数据库的速度和可用性,还拥有开源数据库的简单性与成本效益,Amazon Aurora 让客户满足“鱼和熊掌兼得”需求。

据顾凡介绍,Amazon Aurora 可提供 5 倍于标准 MySQL 性能,3 倍于 PostgreSQL 吞吐量。同时提供高可用,可用区(AZ)+1的高可用,Global Databases 可完成跨区域灾备。可扩展到 15 个只读副本,成本只有商业数据库的 1/10。

医药企业九州通为药厂、供应商,搭建药厂、供应商、消费者提供供应链链条。其 B2B 系统的业务特点是读多写少,受促销活动、工作时间等影响,经常会出现波峰波谷落差较大的情况,读写比例在 7:2 或者 8:3。九州通采用 Amazon Aurora 后实现读写分离和按需扩展,整体数据库性能提升 5 倍,TCO 降低 50%。实现了跨可用区部署、负载均衡、自动故障转移、精细监控、按需自动伸缩等。

据权威机构预测,到 2022 年,75% 数据库将被部署或迁移至云平台。在这个过程中,亚马逊云 科技 是如何通过技术来帮助客户加速应用上云的?这离不开除了上述的“专库专用”外,以下四大理念:

第二个理念是无服务器、敏捷创新。 亚马逊云 科技 大中华区产品部数据类产品高级经理王晓野表示,企业业务总有波峰波谷之时,如何按照企业 80-90% 的业务峰值来规划数据库的存储容量和计算资源的话,将给应用带来一定的业务连续性的妥协和挑战。因此大多数企业都是按照峰值留有余地来选择数据库的计算资源,这将造成成本上的浪费。而 Serverless 数据库服务可完成无差别的繁复工作和自动化扩展。

Amazon DynamoDB 是亚马逊云 科技 自研 Serverless 数据库,其诞生最早可追溯到 2004 年,当时亚马逊电商作为 Oracle 的客户,尽管对于关系型数据库在零售场景的需求并不频繁,70% 均是键值类 *** 作,此时倒逼亚马逊电商思考:为什么要把关系型数据库这么重得使用?我们可以设计一款支持读写、可横向扩展的分布式数据库吗?后来的故事大家都知道了,这款数据库就是 Amazon DynamoDB,并在 2007 年发表论文,掀起业界 NoSQL 分布式数据库技术创新大潮。

Amazon DynamoDB 可为大规模应用提供支持,支撑亚马逊自身多个高流量网站和系统,如亚马逊电商网站、亚马逊全球 442 个物流中心等。在亚马逊电商一年一度 Prime Day,光是针对DynamoDB API 的调用达到数万亿次,最高峰值请求达到每秒 8920 万次。由此可见,DynamoDB 拥有高吞吐、扩展性、一致性、可预测响应延迟、高可用等优势。

智能可穿戴设备厂商华米 科技 ,在全球 70 多个国家拥有近 1 亿用户。仅 2020 年上半年,其手表出货量超 174 万台,截止到 2021 年 2 月,华米 科技 的可穿戴设备累计记录步数是 151 万步,累计记录的睡眠时间是 128 亿个夜晚,记录心率总时长达 1208 亿个小时。如此庞大的数据同时必须保证极高的安全性和低延迟相应,如何保证稳定性是巨大的挑战。

DynamoDB 帮助华米 科技 在任何规模下都能提供延迟不超过 10 毫秒的一致响应时间。华米 科技 健康 云的 P0 和 P1 级别故障减少了约 30%,总体服务可用性提升了 025%,系统可用性指标达到 9999%,为华为 科技 全球化扩展提供了有力的支撑。

最新无服务数据库产品是 Amazon Aurora Serverless V2 提供瞬间扩展能力,真正把扩展能力发挥到极致,在不到一秒的时间内,将几百个事务扩展到数十万的级别。同时在扩展时每一次调整的增量都是非常精细化的去管理,如果按照峰值来规划数据库资源,可实现大概90%的成本节省。目前 Amazon Aurora Serverless V2 在全球实现预览。

第三个理念是全球架构、一键部署。 在全球化的今天,如何支撑全球客户的业务扩展连续性、一致性、以最低延迟带给到终端客户上,对数据库提出新的挑战。

亚马逊云 科技 提供 Amazon Aurora 关系型数据库Global Database、Amazon DynamoDB、Amazon ElastiCache 内存数据库、Amazon DocumentDB 文档数据库都能利用亚马逊云 科技 的骨干网络提供比互联网更稳定的网络支撑,以一键部署的方式,帮助客户实现几千公里跨区域数据库灾备,故障恢复大概能在一分钟之内完成,同时跨区域的数据复制延迟通常小于一秒。

第四个理念是平滑迁移、加速上云。 目前,450000+ 数据库通过亚马逊云 科技 数据库迁移服务迁移到亚马逊云 科技 中,这个数字每年都在不断增长。亚马逊云 科技 提供 Amazon DMS、Amazon Database Migration Service 等工具让开发者和企业进行自助式云迁移。另外,对于迁移过程中可能会需要的支持,可通过专业服务团队和合作伙伴网络成员,为客户提供专业支持,还通过 Database Freedom 项目帮助客户降低他们的顾虑。

今年 11 月,最新产品 Babelfish for Amazon Aurora PostgreSQL 在全球和中国两个区域正式可用,可加速企业上云的迁移,实现让企业可以利用原有的技术栈、原有的 SQL Server T-SQL的人员可以利用到云数据库进行创新。

第五个理念是 AI赋能,深度集成。 我们观察到,ML 技术赋能数据库开发者,开发者无需具备机器学习专业知识,就可进行机器学习 *** 作。在此潮流下,亚马逊云 科技 推出 Amazon Neptune,借由 Deep Graph Library 和 Amazon SageMaker 驱动图神经网络。

今年 8 月,Neptune ML 在中国正式可用,允许数据工程师不需要掌握机器学习的技能直接从图数据库里导出数据、转换格式、训练模型并发布,用 gremlin 语句调用训练成的模型在数据库里实现推理,进行欺诈检测,推荐物品。

目前,亚马逊云 科技 加速在中国区域服务落地,2021年至今新发布 60 多个数据库服务与功能。亚马逊云 科技 正是通过上述五大数据库理念,打造丰富的数据库产品家族,在全球智能化发展趋势下,为企业提供更快更好的数智服务,释放数据价值,并连续六年入选 Gartner 领导者象限,得到业界和客户的深度认可。

一、关系数据库系统的优点

a.灵活性和建库的简单性:从软件开发的前景来看,用户与关系数据库编程之间的接口是灵活与友好的。目前在多数RDDMS产品中使用标准查询语言SQL,允许用户几乎毫无差别地从一个产品到另一个产品存取信息。与关系数据库接口的应用软件具有相似的程序访问机制,提供大量标准的数据存取方法。

b.结构简单:从数据建模的前景看,关系数据库具有相当简单的结构(元组),可为用户或程序提供多个复杂的视图。数据库设计和规范化过程也简单易行和易于理解。由于关系数据库的强有力的、多方面的功能,已经有效地支持许多数据库纳应用。

二、关系数据库系统的缺点

a.数据类型表达能力差:从下一代应用软件的发展角度来看,关系数据库的根本缺陷在于缺乏直接构造与这些应用有关的信息的类型表达能力,缺乏这种能力将产生以下有害的影响,例如:大多数RDBMS产品所采用的简单类型在重构复杂数据的过程中将会出现性能问题;数据库设计过程中的额外复杂性;RDBMS产品和编程语言在数据类型方面的不协调。

大多数现代的RDBMS产品已成熟地用于商务和财政方面,而这些领域不要求很高和很复杂的数据模型。虽然这些产品多多少少克服了一些以上所述的缺点,但从理论上看关系数据模型不直接支持复杂的数据类型,这是由于第一范式的要求,所有的数据必须转换为简单的类型,如整数、实数、双精度数和字符串。

对于工程应用来说,这种不能支持复杂数据类型的典型结果就是需要额外地分解数据结构工作,这些被分解的结构不能直接表示应用数据,且从基本成分重构时也非常繁琐和费时间。

b.复杂查询功能差:关系数据库系统的某些优点也同时是它的不足之处。虽然SQL语言为数据查询提供了很好的定义方法,但当用于复杂信息的查询时可能是非常繁琐的。此外,在工程应用时规范化的过程通常会产生大量的简单表。在这种环境下由存取信息产生的查询必须处理大量的表和复杂的码联系以及连接运算。

除非这些查询以固定的例行程序方式提供,否则用户就必须对SQL非常熟悉,以便适当地浏览数据库,查出所需的信息。然而,一旦查询方式按固定例行程序方式进行,用户最终就进行应用软件的常规维护。但应用或人机接口软件的变化又可能要求经常修改例行的查询,数据库结构的变化也可能导致例行查询程序以及应用或人机接口软件的失效。由于这些原因,关系数据库系统的维护开销可能是很大的。

由于关系数据库不能提供足够的构造能力及性能方面的原因,在进行较复杂的数据库设计过程中,不可能将许多工程问题直接分解成一些简单的部分。由于缺乏直接指针存取方法,所以查询有关的信息需要花费时间。

c.支持长事务能力差;由于RDBMS记录锁机制的颗粒度限制,对于支持多种记录类型的大段数据的登记和检查来说,简单的记录级的锁机制是不够的,但基于键值关系的较复杂的锁机制来说却很难推广也难以实现。

d.环境应变能力差:在要求系统频繁改变的环境下,关系系统的成本高且修改困难。在工程应用中支持"模式演变"(schemaevolution)的功能是很重要的,而RDBMS不容易支持这种功能。另外,关系数据库和编程语言所提供的数据类型的不一致,使得从一个环境转换到另一个环境时需要多至30%的附加代码。

三、面向对象数据库系统的优点

a.能有效地表达客观世界和有效地查询信息:面向对象方法综合了在关系数据库中发展的全部工程原理、系统分析、软件工程和专家系统领域的内容。面向对象的方法符合一般人的思维规律、即将现实世界分解成明确的对象,这些对象具有属性和行为。系统设计人员用ODBMS创建的计算机模型能更直接反映客观世界,最终用户不管是否是计算机专业人员,都可以通过这些模型理解和评述数据库系统。

工程中的一些问题对关系数据库来说显得太复杂,不采取面向对象的方法很难实现。从构造复杂数据的前景看,信息不再需要手工地分解为细小的单元。ODBMS扩展了面向对象的编程环境,该环境可以支持高度复杂数据结构的直接建模。

b.可维护性好:在耦合性和内聚性方面,面向对象数据库的性能尤为突出。这使得数据库设计者可在尽可能少影响现存代码和数据的条件下修改数据库结构,在发现有不能适合原始模型的特殊情况下,能增加一些特殊的类来处理这些情况而不影响现存的数据。如果数据库的基本模式或设计发生变化,为与模式变化保持一致,数据库可以建立原对象的修改版本。这种先进的耦合性和内聚性也简化了在异种硬件平台的网络上的分布式数据库的运行。

c.能很好地解决"阻抗不匹配"(impedancemismatch)问题。面向对象数据库还解决了一个关系数据库运行中的典型问题:应用程序语言与数据库管理系统对数据类型支持的不一致问题,这一问题通常称之为阻抗不匹配问题。

四、面向对象数据库系统的缺点

a.技术还不成熟。面向对象数据库技术的根本缺点是这项技术还不成熟,还不广为人知。与许多新技术一样,风险就在于应用。从事面向对象数据库产品和编程环境的销售活动的公司还不令人信服,因为这些公司的历史还相当短暂,就该十几年前关系数据库的情况一样。ODBMS如今还存在着标准化问题,由于缺乏标准化,许多不同的ODBMS之间不能通用。此外,是否修改SQL以适应面向对象的程序,还是用新的对象查询语言来代替它,目前还没有解决,这些因素表明随着标准化的出现,ODBMS还会变化。

b.面向对象技术需要一定的训练时间:有面向对象系统开发经验的公司的专业人员认为,要成功地开发这种系统的关键是正规的训练,训练之所以重要是由于面向对象数据库的开发是从关系数据库和功能分解方法转化而来的,人们还需要学习一套新的开发方法使之与现有技术相结合。此外,面向对象系统开发的有关原理才刚开始具有雏形,还需一段时间在可靠性、成本等方面令人可接受。

c.理论还需完善:从正规的计算机科学方面看,还需要设计出坚实的演算或理论方法来支持ODBMS的产品。此外,既不存在一套数据库设计方法学,也没有关于面向对象分析的一套清晰的概念模型,怎样设计独立于物理存储的信息还不明确。

面向对象数据库和关系数据库系统之间的争论不同于70年代关系数据库和网状数据库的争论,那时的争论是在同一主要领域(即商业事务应用)中究竟是谁代替谁的问题。现在是肯定关系数据库系统基本适合商业事务处理的前提下,对非传统的应用,特别是工程中的应用用面向对象数据库来补充不足的问题。面向对象数据库系统将成为下一代数据库的典型代表,并和关系数据库系统并存(而不是替代)。它将在不同的应用领域支持不同的应用需求。

以上就是关于科蓝软件数据库比宇信科技数据库谁强全部的内容,包括:科蓝软件数据库比宇信科技数据库谁强、有哪些轻型的非关系型数据库、常用的数据库软件有哪些(常用的数据库软件有哪些选其中一种写出简要使用方法)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9836244.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存