数据库的发展前景怎么样

数据库的发展前景怎么样,第1张

进入信息化市场,数据库的重要性日益凸显,目前数据库主要分为数据库产品、数据库服务和数据库支撑体系。我国数据库产品以关系型为主,非关系型数据库以键值型数据库为主。

金融、电信、政务、制造和互联网为我国数据库应用最为广泛的领域,但是它们的应用特点各不相同。未来,在企业崛起、国家利好政策和资本关注等因素推动下,我国数据库行业市场规模有望接近7百亿元。

本文核心数据:数据库产品分布、数据库市场规模

数据库主要分为三大类

在信息化时代,数据库已经逐渐应用于各行各业。数据库主要分为三大类:数据库产品、数据库服务和数据库支撑体系。

数据库产品主要由关系型数据库、非关系型数据库、混合型数据库及数据库周边工具构成。

数据库服务是指围绕数据库的咨询规划、实施部署和运维运营等环节,为数据库系统的正常、高效、持续、安全使用提供信息技术服务工作。

数据库支撑体系由从事数据库学术研究、人才培养、开源社区、评测认证等工作的相关主体共同构成。

数据库产品以关系型为主,非关系型数据库以键值型数据库为主

目前,我国数据库产品主要以关系型为主,非关系型及混合型数据库较少。截止2021年6月,我国关系型数据库共有81个,非关系型数据库共有54个。在非关系型数据库中,键值型数据库占比最高,占非关系型数据库的926%。

五大行业应用较广,应用特点各不相同

在我国,金融、电信、政务、制造和互联网为我国数据库应用最为广泛的领域,但是它们的应用特点各不相同,金融、电信的IT监管环境较为严格、数据业务较为复杂、核心数据业务呈现“强事务”的特点,而对成本敏感度较低。与之相反的是,互联网领域对IT监管环境较弱,但是对成本敏感度较高。

市场规模有望接近7百亿元

虽然目前我国数据库较欧美国家发展规模较小,2020年我国数据库市场规模约占全球数据库市场规模的52%,约为2409亿元。

但是,随着我国浙江智臾、涛思数据等为代表的时序数据库企业不断涌现,同时得到政策政策以及资本关注,我国数据库行业有望迎来新一轮的增长,2025年我国数据库市场规模有望接近7百亿元。

想要入行数据分析需要学习以下三种技能

1,SQL(数据库)处理海量的数据,数据来源于数据库,从数据库取数据,何建立两表、三表之间的关系,想要的特定的数据等,而这些是需要SQL解决的,所以SQL是数据分析的最基础的技能。

2,统计学基础:数据分析的前提要对数据有感知,数据如何收集,数据整体分布是怎样的,如果有时间维度的话随着时间的变化是怎样的,数据的平均值是什么,数据的最大值最小值指什么,数据相关与回归、时间序列分析和预测等,这些也是需要统计学的技能才能做好的。

3,Python或者R的基础:这是必备项,学会一门技术工具,是入门数据分析师的门槛。

扩展资料

一、数据分析方向

数据挖掘方向:想要在一两个月内快速成为数据挖掘向的数据分析师很难,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少。利用数据挖掘进行数据分析常用的3个方法:分类、回归分析、聚类等, 它们分别从不同的角度对数据进行挖掘。

回归分析:回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。

业务方向:需要对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。

二、入门数据分析的参考书籍推荐

《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》。

作者 石默研

新型“数联网”基础设施

2020年4月,《中共中央国务院关于构建更加完善的要素市场化配置体制机制的意见》(下称《2020数据要素意见》)发布以来,数据要素的市场价值日益受到重视。同时,长期的实践证明,数据要素的威力,大多数情况下源于对多源数据的融合分析,单一组织靠自身积累往往难以聚集足够价值的数据,因此,只有通过数据跨域流通与共享开放才能真正发挥大数据的应用价值。如银行、保险、政府、电商等等行行业业,已经有了强烈、广泛的数据跨域集成与融合的市场需求。另一方面,随着数字化的深入发展,信息技术已经开始从助力经济发展的辅助工具向引领经济发展的核心引擎转变,大数据资源应该向资产升级,对“数字经济”新范式产生更加直接的驱动作用。而大数据资源向资产升级的关键则是高效、安全的互联互通、精确的计量计价及数据所有权、使用权的市场化清晰界定。

于是,“数据要素互联互通网络”数联网成为国家乃至国际一项重要的新型互联网基础设施与创新业态诉求,有着重大的 社会 价值与广阔的市场空间。

2 云原生数据库服务

云原生数据库,是支撑现代数据服务的主体设施,它生于云上,长于云上,对外形成按需获取的DBCloud形态,使用者无需关心数据计算与存储的具体细节,无需为部署、运维、扩缩等工作付出精力,无需对数据计算的模态(AP,TP,流,图等)做出额外的规划与设计,无需区分所选择云计算基础设施IaaS的特性与区别,只需要向云原生数据库DBCloud的运营者申请使用相应的服务即可,这是现代数据库技术与服务发展的必然方向。毫无疑问,在不久的将来,全球越来越多的数据服务将在云上,包括多云、跨云的环境中以平台化的方式实现。由于云计算环境所带来的强大算力与各项能力,数据服务平台化必将极大地推动与加速各行业业务数字化转型升级的进程,而云原生数据库也必将成为新数字化时代一项关键的公共IT基础设施。

3 从数据库平台服务到新一代互联网基础设施“数联网”

关于数据流通互联基础设施“数联网”,相当长一段时间以来,国内外已经有很多建设与运营的尝试,在我国主要就是各级政府主导的“大数据交易中心”,从2014年起就开始启动,经历了2014-2016年“第一次浪潮”后,于2017-2019年处于“停滞期”,运营实践看,整体成交量远低于预期。原因主要在于数据所有权与使用权属难以界定,隐私、安全与共享之间的矛盾越来越明显。一方面跨域数据共创需求越来越迫切,另一方面,数据的无序流通,又可能导致隐私保护与数据安全的重大风险,必须加以规范与限制。无论是国际还是国内,日趋严格的“数据安全法”“信息保护法案”不断出台,在客观上增加了数据流通的成本,降低了数据综合利用的效率;而大数据价值的精确计量计价也难以实现,不能有效体现数据的资产属性。如何兼顾发展与安全,平衡效率与风险,准确衡量价值,是全世界在大数据治理中一直面临的共同课题,也导致规范高效的数据流通市场始终未能形成。

而中央的《2020数据要素意见》,首次明确了培育数据要素市场的目标和定位,随之有关数据安全、信息保护的法案以及技术系列标准等相继发布,为促进数据流通规范化运作提供了政策制度基础;同时,“数据可用不可见、用途可控可计量”的隐私安全计算技术与创新模式也蓬勃发展并成熟起来,为解决隐私安全问题及数据资产化提供了坚实的技术基础。因此,自2020年至今,以新兴技术驱动“数据使用价值流通”新模式的数据要素流通市场迎来“第二次浪潮”,新一轮建设再次启动,全国一年来共有6家新型数据资产交易中心开始筹备建设,其中北数所等2家新型示范已正式投入运营。隐私安全计算技术采用数据不动、算法流动的策略,在数据不出域的情况下,安全地达到数据跨域联合计算的目的。虽然目前该组技术的成熟度与标准化程度还有待提高,在相当范围内也有炒作的成份,但在强烈需求与趋势的驱动下,发展很快,前景极为可期。

应该可以看到:采用“数据使用权”而不是“所有权”交易实现跨域流通,对数据访问按量计价的新模式同时也给云原生数据库服务带来新的商业发展契机,原因很简单:数据库本身就是以提供数据使用服务为天职的!

仔细调研与分析还会发现,当前政府主导的新型数据资产交易所对“数据使用权”流通模式的尝试,基本还在“雷声大,雨点小”的阶段,至今实效依然甚微!这除了可能还需要一定的市场培育周期以外,本文认为一个最重要的原因是:凭空而生的数据交易所,并没有直接沉淀客户数据的条件,运营只能靠“借鸡生蛋”,而正在发生的事实也正是如此:大都以授权政府数据公开运营为起点,然后大力“邀请”各种数据资源拥有者上平台,培育数据流通生态圈。然而,多数情况下,一是静态政务数据的实用价值很有限(例如对金融风控),二是真正有价值的产业活数据与公民行为数据拥有者(在其自有数据库中)上交易平台的程序非常繁杂,意愿较低。同时,现阶段在技术体系上,新型交易所主要依赖隐私计算,对数据库总体采用松散繁杂的集成方案对接,就是说,目前还没有系统重视数据库的技术定位。

本文认为,首先,从技术上讲,云原生数据库融入隐私安全计算甚至更广泛的跨域安全计算手段,并没有太大的瓶颈,还可以方便地承担可信安全中介的角色,却会赋予数据资源拥有者最便利的“数据使用权”共享能力。更重要的是,当云计算环境下的数据服务平台化成为全球化趋势后,全 社会 范围内大多数的数据库服务都将由云原生数据库平台运营者所承担,它就自然建立了最广泛丰富的“数据流通生态圈”,天然拥有提供“数据跨域流通互联”服务的各种有利条件。而云原生数据流通显然是目前数据要素市场化领域需求与商业前景最为强烈的可运营业务之一,如果云原生数据库服务运营者借其固有优势,同时运营数据要素流通业务,必将在技术效能与商业模式上超越现存的各种模式,对政府主导、靠“借鸡生蛋”现有市场带来巨大的挑战,甚至是终结。

进一步讲,这种能力的提供,不仅可以最大限度地挖掘与发挥数据要素的价值与红利,还可以极大地加速各行业、各组织对云原生数据库平台服务的消费需求,两种因素又会相互促进,从而使云原生数据库服务成为将来数据要素市场化的新标准,自然进化为新一代互联网基础设施“数联网”本身。

首先是传统运营商所提供的服务类型已经从单一的话音结合少量的数据通讯,向多媒体、iptv等多业务叠加模式演变;其次,是价值链的改变,运营商不得不面对为数众多的、并且在逐步壮大的互联网服务提供商和应用提供商,想自己直接经营显然不太现实。但是,以腾讯、百度、新浪等为首的传统互联网巨头认为,三大电信运营商并不会对传统互联网公司以及新兴的移动互联网企业构成威胁,通过合作,互联网公司将与电信运营商实现共赢。如何处理与新兴互联网公司的关系?公司化运作、新的it技术的利用是否是其转型的救命稻草?云、管、端三线布局能否解决管道化的忧虑?这是移动互联网时代,摆在中国移动、中国联通、中国电信三大电信运营商面前的难题。

电信运营商必须深化战略转型,否则将难以应对移动互联网时代的各项挑战

据赛迪顾问数据显示,2012年中国已有超过4亿用户尝试用手机访问互联网,微信用户突破3亿,手机用户上网的频率全面提高。随着未来以智能手机、平板电脑为代表的新式移动互联网终端的不断推出,人们对于移动互联网业务的需求将呈现爆炸式增长趋势。显而易见,移动互联网正在孕育着一个巨大的市场商机。移动互联网产业生态价值链还在重塑过程中,但机遇大于挑战,关键是如何调整商业模式、战略、策略、渠道。

然而,当电信运营商从被动转主动开始拥抱移动互联网所造就的数据时代时,其最强劲的竞争对手互联网巨头已经成为近年来发展最为迅速、灵活、并且创意无限的角色。当前,即便是世界优秀的电信运营商也面临着艰巨的业务转型需要和巨大的发展瓶颈。在移动互联网时代,运营商缺乏互联网运营经验、对终端掌控力度不足、业务创新能力落后、缺乏标准开发能力以及资源使用与管理运营支撑效率低已经成为了运营商全面增长的几个主要的劣势所在。从最新公布的中国移动、2013年一季度财报来看,利润增长几乎停滞,增长显现出疲态。运营商的转型之门若干年后又将重新打开,而不管是“流量经营”和“去电信化”等运营商转型思路,赛迪顾问认为,面临移动互联网带来的庞大的数据挑战,电信运营商的转型之路必须要围绕海量数据所带来的商机作深度挖掘和分析。

海量数据的出现、数据结构变化给运营商的数据管理及分析带来高度挑战

尽管移动互联网时代给电信运营商带来前所未有的机遇,然而正如硬币的两面,这个时代的到来同样也给电信运营商带来了无限的挑战,特别是大数据的挑战。这个挑战主要表现在以下两个方面:其一、传统数据仓库难以满足日益增长的业务数据所带来的存储、计算需求。随着业务发展数据量的增加,应用复杂导致的数据量增加,这些数据量导致了数据存储和处理压力; 数据仓库无法线性扩容,管理难度加大,成本高扩容压力大,效率下降等。其二、传统数据仓库难以满足非结构化数据的处理要求。移动互联网和物联网业务带来的非结构化数据、半结构化数据(如网页、聊天记录)对分析系统提出了不同以往的处理要求,如自然语言处理、网页分类等。下图描述了运营商针对不同业务所应具备的大数据处理模型特征,是运营商急需提升的应用处理能力模型。

图1 电信运营商大数据处理应用模型

从上图看,准实时处理、非实时处理以及oltp/在线事务处理以及在线分析应用四个方向的能力将是电信运营商在主要大数据应用所应具备的能力,也是未来运营商大数据的重要竞争优势的角逐。

利用大数据转型,运营商在行动

其实,各大运营商在面向移动互联时代已经做好了部分准备,而且在应对大数据挑战上逐步提高了竞争意识。

中国电信很早就已经意识到移动互联网时代的到来,并于2005年提出了战略转型的构想,主要目的就是为了应对移动互联网时代的挑战。而当前,中国电信已经提出了“智慧城市”发展战略,其中很重要的技术结合点就是物联网和大数据。基于以上战略,中国电信定位成为智能管道的主导者、综合平台的提供者、内容应用的参与者。而在“流量经营”方面,中国电信从“话务经营”向“流量经营”转型。结合大数据技术,中国电信也将深入idc服务以及智慧城市建设,并发掘移动互联与之结合的商机,重塑转型之路。

中国移动数据部认为,在移动互联网时代,电信运营商需要转型,要以开放的姿态获取更多的合作,而中国移动的阅读、游戏、动漫、音乐等业务都将通过开放合作的方式来寻求发展。通过开放合作平台,中国移动从“移动通信专家”到“移动信息专家”的策略转变,就是为顺应移动互联网时代潮流而做出的改变。这一战略的发展基础就是中国移动针对大数据和云计算研究所获得的应用发展方向。中国移动在大云15平台上部署了分析型paas产品,利用bc-hadoop构建大数据处理平台,同时建设了并行数据挖掘系统(bc-pdm&etl)以及商务智能平台(bi-paas)等大数据应用平台,为将来在大数据应用和服务市场做了充分准备。

中国联通对大数据的探索源自于2010年中国联通数据大集中策略的提出。2009年,中国联通3g业务正式商用,提出“统一品牌、统一业务、统一包装、统一资费、统一终端政策、统一服务标准”的“六个统一”策略。这意味着中国联通要走一条数据大集中的路线。2012年底,中国联通就已经成功将大数据和hadoop技术引入到移动通信用户上网记录集中查询与分析支撑系统。当前,中国联通已经新增100亿投资重庆大数据计划,显现了其发展大数据,转型自身业务的决心。

总体来看,运营商利用大数据来推动业务转型将是未来电信市场的一个重要方向。电信运营商如果能够通过技术的进步,不断释放其管道中庞大数据的潜在力量,将会成为未来移动互联时代中最大的赢家。

APP从开发到上线运营大概需要多少时间和资金

简单点来说,要视手机APP的需求及质量而言,价位一般在几千到十几万左右,更高端的价格更高。

今天,我们就来详细分析一下这个问题,请继续往下看吧。 

一、APP开发款式分为固定款和定制款,两者的价格均不相同

固定款:是指直接套用已有的、现成的APP固定模板,报价是固定的,所需要的功能也是固定的,缺点就是客户拿不到源代码,也不能根据企业需求进行定制,由于源代码是封装的,如果企业以后想进行功能升级或系统维护的话,也不能够实现,只能重新开发一个新的软件。

固定款的APP开发时间短,约2~3日的时间即可完成,费用大约在几千到几万之间。

定制款:定制款是指APP的功能全部重新开发,过程比较繁琐,需要美工、策划、APP开发(前台/客户端/手机端)、后台程序员等工种协同完成,大型的、功能复杂的APP甚至需要数十人的团队。

由于APP的功能和设计都是定制的,因此价格会高些。定制款的开发时间与开发价格是成正比的,开发时间长,大约在两三个月甚至不定的周期里才能完成,而费用大概在几万甚至十几万左右。

因此,想要知道开发一款手机APP需要花费多少钱,企业主首先必须把APP的详细需求和功能告知APP开发公司,开发公司才能报出一个合理的价格。

二、手机APP平台不同,制作成本也不一样

现在市面上流行的手机APP制作平台主要有两种一般包括两种系统:安卓系统(Android)和苹果系统(IOS)。

一般来说,制作苹果系统的手机APP软件费用要比安卓平台的贵一些,因为苹果公司对苹果平台的封闭性和手机APP开发语言Objective-C的难度,都让APP开发者加大了苹果系统手机APP开发的难度。

三、APP制作成本包含参与人员的工资

通常情况下,开发一款APP需要产品经理、客户端工程师、后端工程师和UI设计师各一名,这已经是制作手机APP应用软件比较精简的配置了,所以这些参与人员的工资也是包含在APP制作成本当中的。这些工作人员的月薪加起来可能都会超过4、5万元。

四、APP开发公司的所在地

需要注意的是,同样实力的APP开发公司,在不同的城市也会导致APP的成本费用高一些

以上就是关于数据库的发展前景怎么样全部的内容,包括:数据库的发展前景怎么样、数据分析如何入行、从云原生数据库服务到新型“数联网”基础设施等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9844364.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存