sql语句调优的主要方法

sql语句调优的主要方法,第1张

SQL语句调优,要看在什么数据库平台,数据库不同使用的调优方式也不同。

总体来说,一种是通过查询系统数据库,找出最消耗资源的SQL,然后进行调优。

在有一种就是对已有的SQL语句进行调优,通常是查看SQL执行计划,是否有使用到索引,查看SQL的消耗,根据具体情况进行调优。

我们都知道,服务器数据库的开发一般都是通过java或者是PHP语言来编程实现的,而为了提高我们数据库的运行速度和效率,数据库优化也成为了我们每日的工作重点,今天,天通苑IT培训就一起来了解一下mysql服务器数据库的优化方法。

为什么要了解索引

真实案例

案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。

案例二:近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。

索引的优点

合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。

索引的类型

mysql数据中有多种索引类型,primarykey,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。

BTREE是常见的优化要面对的索引结构,都是基于BTREE的讨论。

B-TREE

查询数据简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。

现代数据库的索引文件和文件系统的文件块都被组织成BTREE。

btree的每个节点都包含有key,data和只想子节点指针。

btree有度的概念d>=1。假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。树的大高度为h=Logb[(N+1)/2]。

索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。这样磁盘I/O的次数,就等于树的高度h。假设b=100,一百万个节点的树,h将只有3层。即,只有3次磁盘I/O就可以查找完毕,性能非常高。

索引查询

建立索引后,合适的查询语句才能大发挥索引的优势。

另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配合适的索引。

在进行软件开发过程中,数据库的使用是非常重要的,但是数据库有很多种,不同数据库的使用方法是不同的。进行软件开发过程中,至少需要掌握一种数据库的使用方法。SQL数据库语法简单、 *** 作方便和高效,是很多人最优的选择,但是SQL语句会受到不同数据库功能的影响,在计算时间和语言的效率上面需要进行优化,根据实际情况进行调整。下面电脑培训为大家介绍SQL数据库的优化方法。

一、适当的索引

索引基本上是一种数据结构,有助于加速整个数据检索过程。唯一索引是创建不重叠的数据列的索引。正确的索引可以更快地访问数据库,但是索引太多或没有索引会导致错误的结果。IT培训认为如果没有索引,处理速度会变得非常慢。

二、仅索引相关数据

指定需要检索数据的精度。使用命令和LIMIT代替SELECT。调整数据库时,必须使用所需的数据集而不是整个数据集,尤其是当数据源非常大时,指定所需的数据集,能够节省大部分时间。

三、根据需求使用或避免临时表

如果代码可以用简单的方式编写,那么永远不要使临时表变得复杂。当然,如果数据具有需要多个查询的特定程序,北大青鸟建议在这种情况下,使用临时表。临时表通常由子查询交替。

四、避免编码循环

避免编码循环是非常重要的,因为它会减慢整个序列的速度。通过使用具有单行的唯一UPDATE或INSERT命令来避免编码循环,并且北京北大青鸟发现WHERE命令能够确保存储的数据不被更新,这样能够方便在找到匹配和预先存在的数据时被找到。

SQL 查询优化减少了查询所需的资源并提高了整体系统性能,在本文中,我们将讨论 SQL 查询优化、它是如何完成的、最佳实践及其重要性。

SQL 查询优化是编写高效的 SQL 查询,并在执行时间和数据库表示方面 提高查询性能 的迭代过程,查询优化是几个关系数据库管理系统 (RDBMS) 的一项重要功能。

查询是对来自数据库的数据或信息的问题或请求,需要编写一组数据库可以理解的预定义代码,结构化查询语言 (SQL) 和其他查询语言旨在检索或管理关系数据库中的数据。

数据库中的查询可以用许多不同的结构编写,并且可以通过不同的算法执行,写得不好的查询会消耗更多的系统资源,执行时间长,并可能导致服务损失,一个完美的查询可以减少执行时间并带来最佳的 SQL 性能。

SQL查询优化的主要目的是:

确保查询处于最佳路径和形式非常重要,SQL 查询过程需要最好的执行计划和计算资源,因为它们是 CPU 密集型 *** 作,SQL 查询优化通过三个基本步骤完成:

解析确保查询在语法和语义上都是正确的,如果查询语法正确,则将其转换为表达式并传递到下一步。

优化在查询性能中扮演着重要的角色,并且可能很困难,任何考虑优化的查询执行计划都必须返回与之前相同的结果,但优化后的性能应该会有所提高。

SQL 查询优化包括以下基本任务:

最后,查询执行涉及将查询优化步骤生成的计划转化为 *** 作,如果没有发生错误,此步骤将返回结果给用户。

一旦用户确定某个查询需要改进以优化 SQL 性能,他们就可以选择任何优化方法——优化 SQL 查询性能的方法有很多种,下面介绍了一些最佳实践。

提高查询性能的一种简单方法是将 SELECT 替换为实际的列名,当开发人员在表中使用 SELECT 语句时,它会读取每一列的可用数据。

使用 SELECT 字段名 FROM 而不是 SELECT FROM 时,可以缩小查询期间从表中提取的数据的范围,这有助于提高查询速度。

循环中的 SQL 查询运行不止一次,这会显着降低运行速度,这些查询会不必要地消耗内存、CPU 能力和带宽,这会影响性能,尤其是当 SQL 服务器不在本地计算机上时,删除循环内的查询可提高整体查询性能。

使用SQL 服务器索引可以减少运行时间并更快地检索数据,可以使用聚集和非聚集 SQL 索引来优化 SQL 查询,非聚集索引单独存储,需要更多的磁盘空间,因此,了解何时使用索引很重要。

该OLAP功能“扩展了SQL解析函数的语法。” SQL 中的 OLAP 功能更快且易于使用,熟悉这些语法的 SQL 开发人员和 DBA 可以很容易地适应和使用它们。

OLAP 函数可以创建所有标准计算度量,例如排名、移动聚合、份额、期初至今、前期和未来期、平行期等。

查询优化器使用统计信息来确定如何最好地连接表、何时应该使用索引以及如何访问这些索引等,无论是手动还是自动,SQL 服务器统计信息都应该保持最新。

过时的 SQL Server 统计信息会影响表、索引或列统计信息,并导致查询计划性能不佳。

SQL 查询优化可以轻松提高系统性能,从而节省成本,优化 SQL 查询可以提高运营效率并加快性能,从而提高系统上线进度。

SQL 查询优化很重要,原因有很多,包括:

组织可以通过更快的响应时间获得可靠的数据访问和高水平的性能,优化 SQL 查询不仅可以提高整体系统性能,还可以提高组织的声誉,最终,SQL 查询优化的最佳实践帮助用户获得准确、快速的数据库结果。

在数据库应用系统中编写可执行的SQL语句可以有多种方式实现,但哪一条是最佳方案却难以确定。为了解决这一问题,有必要对SQL实施优化。简单地说,SQL语句的优化就是将性能低下的SQL语句转换成达到同样目的的性能更好的SQL语句。

优化SQL语句的原因

数据库系统的生命周期可以分成: 设计、开发和成品三个阶段。在设计阶段进行优化的成本最低,收益最大。在成品阶段进行优化的成本最高,收益最小。如果将一个数据库系统比喻成一座楼房,在楼房建好后进行矫正往往成本很高而收效很小(甚至可能根本无法矫正),而在楼房设计、生产阶段控制好每块砖瓦的质量就能达到花费小而见效高的目的。

为了获得最大效益,人们常需要对数据库进行优化。数据库的优化通常可以通过对网络、硬件、 *** 作系统、数据库参数和应用程序的优化来进行。根据统计,对网络、硬件、 *** 作系统、数据库参数进行优化所获得的性能提升全部加起来只占数据库应用系统性能提升的40%左右,其余60%的系统性能提升全部来自对应用程序的优化。许多优化专家甚至认为对应用程序的优化可以得到80%的系统性能提升。因此可以肯定,通过优化应用程序来对数据库系统进行优化能获得更大的收益。

对应用程序的优化通常可分为两个方面: 源代码的优化和SQL语句的优化。由于涉及到对程序逻辑的改变,源代码的优化在时间成本和风险上代价很高(尤其是对正在使用中的系统进行优化) 。另一方面,源代码的优化对数据库系统性能的提升收效有限,因为应用程序对数据库的 *** 作最终要表现为SQL语句对数据库的 *** 作。

对SQL语句进行优化有以下一些直接原因:

1 SQL语句是对数据库(数据) 进行 *** 作的惟一途径,应用程序的执行最终要归结为SQL语句的执行,SQL语句的效率对数据库系统的性能起到了决定性的作用。

2 SQL语句消耗了70%~90%的数据库资源。

3 SQL语句独立于程序设计逻辑,对SQL语句进行优化不会影响程序逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低。

4 SQL语句可以有不同的写法,不同的写法在性能上的差异可能很大。

5 SQL语句易学,难精通。SQL语句的性能往往同实际运行系统的数据库结构、记录数量等有关,不存在普遍适用的规律来提升性能。

传统的优化方法

SQL程序人员在传统上采用手工重写来对SQL语句进行优化。这主要依靠DBA或资深程序员对SQL语句执行计划的分析,依靠经验,尝试重写SQL语句,然后对结果和性能进行比较以试图找到性能较佳的SQL语句。这种做法存在着以下不足:

1 无法找出SQL语句的所有可能写法。很可能花费了大量的时间也无法找到性能较佳的SQL语句。即便找到了某个性能较佳的SQL语句也无法知道是否存在性能更好的写法。

2 非常依赖于人的经验,经验的多寡往往决定了优化后SQL语句的性能。

3 非常耗时间。重写-->校验正确性-->比较性能,这一循环过程需要大量的时间。

根据传统的SQL优化工具的功能,人们一般将优化工具分为以下三代产品:

第一代的SQL优化工具是执行计划分析工具。这类工具对输入的SQL语句从数据库提取执行计划,并解释执行计划中关键字的含义。

第二代的SQL优化工具只能提供增加索引的建议,它通过对输入的SQL语句的执行计划的分析来产生是否要增加索引的建议。这类工具存在着致命的缺点——只分析了一条SQL语句就得出增加某个索引的结论,根本不理会(实际上也无法评估到)增加的索引对整体数据库系统性能的影响。

第三代工具是利用人工智能实现自动SQL优化。

人工智能自动SQL优化

随着人工智能技术的发展和在数据库优化领域应用的深入,在20世纪90年代末优化技术取得了突破性的进展,出现了人工智能自动SQL优化。人工智能自动SQL优化的本质就是借助人工智能技术,自动对SQL语句进行重写,找到性能最好的等效SQL语句。LECCO SQL Expert就采用了这种人工智能技术,其SQL Expert支持Oracle、Sybase、MS SQL Server和IBM DB2数据库平台。其突出特点是自动优化SQL语句。除此以外,还可以以人工智能知识库“反馈式搜索引擎”来重写SQL语句,并找出所有等效的SQL语句及可能的执行计划,通过测试运行为应用程序和数据库自动找到性能最好的SQL语句,提供微秒级的计时; 能够优化Web应用程序和有大量用户的在线事务处理中运行时间很短的SQL语句; 能通过比较源SQL和待选SQL的不同之处,为开发人员提供“边做边学式训练”,迅速提高开发人员的SQL编程技能等等。

该工具针对数据库应用的开发和维护阶段提供了数个特别的模块:SQL语法优化器、PL/SQL集成化开发调试环境(IDE)、扫描器、数据库监视器等。其核心模块之一“SQL 语法优化器”的工作原理大致如下:输入一条源SQL语句,“人工智能反馈式搜索引擎”对输入的SQL语句结合检测到的数据库结构和索引进行重写,产生N条等效的SQL语句输出,产生的N条等效SQL语句再送入“人工智能反馈式搜索引擎”进行重写,直至无法产生新的输出或搜索限额满,接下来对输出的SQL语句进行过滤,选出具有不同执行计划的SQL语句(不同的执行计划意味着不同的执行效率),最后,对得到的SQL语句进行批量测试,找出性能最好的SQL语句(参见下图)。

图 人工智能自动SQL优化示意图

LECCO SQL Expert不仅能够找到最佳的SQL语句,它所提供的“边做边学式训练”还能够教会开发人员和数据库管理员如何写出性能最好的SQL语句。LECCO SQL Expert的SQL语句自动优化功能使SQL的优化变得极其简单,只要能够写出SQL语句,它就能帮开发人员找到最好性能的写法。

小 结

SQL语句是数据库应用中一个非常关键的部分,它执行性能的高低直接影响着应用程序的运行效率。正因为如此,人们在SQL语句的优化上投入了很大的精力,出现了许多SQL语句优化工具。随着人工智能等相关技术的日益成熟, 肯定还会有更多更好的工具出现,这将会给开发人员提供更多的帮助。

以上就是关于sql语句调优的主要方法全部的内容,包括:sql语句调优的主要方法、mysql数据库的优化方法、SQL数据库优化的方法有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9847050.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存