在SQLServer中使用索引的技巧

在SQLServer中使用索引的技巧,第1张

在SQL Server中 为了查询性能的优化 有时我们就需要对数据表通过建立索引的方式 目的主要是根据查询要求 迅速缩小查询范围 避免全表扫描

索引有两种类型 分别是聚集索引(clustered index 也称聚类索引 簇集索引)和非聚集索引(nonclustered index 也称非聚类索引 非簇集索引)

聚集索引在一个表中只能有一个 默认情况下在主键建立的时候创建 它是规定数据在表中的物理存储顺序 我们也可以取消主键的聚集索引 所以必须考虑数据库可能用到的查询类型以及使用的最为频繁的查询类型 对其最常用的一个字段或者多个字段建立聚集索引或者组合的聚集索引 它就是SQL Server会在物理上按升序(默认)或者降序重排数据列 这样就可以迅速的找到被查询的数据

非聚集索主要是数据存储在一个地方 索引存储在另一个地方 索引带有指针指向数据的存储位置 索引中的项目按索引键值的顺序存储 而表中的信息按另一种顺序存储 可以在一个表格中使用高达 个非聚集的索引 在查询的过程中先对非聚集索引进行搜索 找到数据值在表中的位置 然后从该位置直接检索数据 这使非聚集索引成为精确匹配查询的最佳方法 因为索引包含描述查询所搜索的数据值在表中的精确位置的条目

所以我们在选择创建聚集索引的时候要注意以下几个方面

) 对表建立主键时 就会为主键自动添加了聚集索引 如自动编号字段 而我们没有必要把聚集索引浪费在主键上 除非你只按主键查询 所以会把聚集索引设置在按条件查询频率最高的那个字段或者组合的字段

) 索引的建立要根据实际应用的需求来进行 并非是在任何字段上建立索引就能提高查询速度 聚集索引建立遵循下面几个原则

包含大量非重复值的列

使用下列运算符返回一个范围值的查询 BEEEN > >= < 和 <=

被连续访问的列

返回大型结果集的查询

经常被使用联接或 GROUP BY 子句的查询访问的列;一般来说 这些是外键列 对ORDER BY 或 GROUP BY 子句中指定的列进行索引 可以使 SQL Server 不必对数据进行排序 因为这些行已经排序 这样可以提高查询性能

OLTP 类型的应用程序 这些程序要求进行非常快速的单行查找(一般通过主键) 应在主键上创建聚集索引

举例来说 银行交易日志中对交易日期建立聚合索引 数据物理上按顺序存于数据页上 重复值也排列在一起 因而在范围查找时 可以先找到这个范围的起末点 且只在这个范围内扫描数据页 避免了大范围扫描 提高了查询速度 而如果我们对员工的基本信息表中性别的字段列上建立聚集索引 就完全没有必要 因为内容里只涉及到 男 与 女 两个不同值

) 在聚集索引中按常用的组合字段建立索引 形成复合索引 一般在为表建立多个主键的时候就会产生 如果一个表中的数据在查询时有多个字段总是同时出现则这些字段就可以作为复合索引 这样能形成索引覆盖 提高where语句的查询效率

)索引对查询有一这的优化 但由于改变一个表的内容 将会引起索引的变化 频繁的对数据 *** 作如insert update delete语句将导致系统花费较大的代价进行索引更新 引起整体性能的下降 一般来讲 在对查询性能的要求高于对数据维护性能要求时 应该尽量使用索引 有时在这种 *** 作数据库比较频繁的某些极端情况下 可先删除索引 再对数据库表更新大量数据 最后再重建索引 新建立的索引总是比较好用

索引在使用了长久的时候 就会产生很多的碎片 查询的性能就会受到影响 这时候有两种方法解决 一是利用DBCC INDEXDEFRAG整理索引碎片 还有就是利用DBCC DBREINDEX重建索引

DBCC INDEXDEFRAG 命令是联机 *** 作 所以索引只有在该命令正在运行时才可用 而且可以在不丢失已完成工作的情况下中断该 *** 作 这种方法的缺点是在重新组织数据方面没有聚集索引的除去/重新创建 *** 作有效

重新创建聚集索引将对数据进行重新组织 其结果是使数据页填满 填满程度可以使用 FILLFACTOR 选项进行配置 这种方法的缺点是索引在除去/重新创建周期内为脱机状态 并且 *** 作属原子级 如果中断索引创建 则不会重新创建该索引

我们来看看索引重建使用的方法

语法 DBCC DBREINDEX ( [ TableName [ index_name [ fillfactor ] ] ] )

参数 TableName

是要重建其指定的索引的表名 数据库 所有者和表名必须符合标识符的规则 有关更多信息 请参见使用标识符 如果提供 database 或 owner 部分 则必须使用单引号 ( )

将整个 database owner table_name 括起来 如果只指定 table_name 则不需要单引号

index_name 是要重建的索引名 索引名必须符合标识符的规则 如果未指定 index_name 或指定为 就要对表的所有索引进行重建

fillfactor 是创建索引时每个索引页上要用于存储数据的空间百分比 fillfactor替换起始填充因子以作为索引或任何其它重建的非聚集索引(因为已重建聚集索引)的新默认值 如果 fillfactor 为 DBCC DBREINDEX 在创建索引时将使用指定的起始fillfactor

我们在查询分析器中输入如下的命令

DBCC DBREINDEX ( MyTable )

lishixinzhi/Article/program/SQLServer/201311/22210

说实话,不是看着这80分,我还真不敢随便回答你,因为看得出,你对数据库的了解,,,,真的还,,,,,

1首先你得知道表名、字段,比如人物级别,你得知道它的字段是什么,一般不会用中文,可能的是 lv,弄清楚人物级别和标识的字段名字后,我们可以开始查询了

2现在假设人物级别字段为lv,标识为 index,假设表名为 table

1-25级(包括1级,包括25级)人物标识为0001的语句:

select from table where lv>=1 and lv<=25 and index='0001'

标识为0002的,而且级别是25-60(包括25,包括60)的语句:

select from table where lv>=25 and lv<=60 and index='0002'

这样根据各个运行结果的条数,就可以看出对应人物有多少个

也可以这样写:

select count() from table where lv>=1 and lv<=25 and index='0001'

select count() from table where lv>=25 and lv<=60 and index='0002'

这样可以各只出现一条,看对应数字就可以了。

或者你需要2个在一条中看出来按以下写;

select sum(case when lv>=1 and lv<=25 and index='0001' then 1 else 0 end) 标识0001的25级以下的,sum(case when lv>=25 and lv<=60 and index='0002' then 1 else 0 end) 标识0002的25以上的 from table

以上语句,如果你 需要不包括,只需要把级别对应前面的等号去掉就OK了

OK,搞定,给分啦,好辛苦。嘿嘿

补充一下,你的数据库名,表名,字段名,这是任何人都猜不到的,因为是写程序的人自定义的,谁知道那天杀的怎么想。你可以去对应服务器的企业管理器里找,,,就可以找到了,当然最直接的是问程序开发者,或者看代码(估计你也看不出来,,,汗一个)

建立索引常用的规则如下:

1、表的主键、外键必须有索引;

2、数据量超过300的表应该有索引;

3、经常与其他表进行连接的表,在连接字段上应该建立索引;

4、经常出现在Where子句中的字段,特别是大表的字段,应该建立索引;

5、索引应该建在选择性高的字段上;

6、索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引;

7、复合索引的建立需要进行仔细分析;尽量考虑用单字段索引代替:

A、正确选择复合索引中的主列字段,一般是选择性较好的字段;

B、复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单字段索引;

C、如果复合索引中包含的字段经常单独出现在Where子句中,则分解为多个单字段索引;

D、如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段;

E、如果既有单字段索引,又有这几个字段上的复合索引,一般可以删除复合索引;

8、频繁进行数据 *** 作的表,不要建立太多的索引;

9、删除无用的索引,避免对执行计划造成负面影响;

以上是一些普遍的建立索引时的判断依据。一言以蔽之,索引的建立必须慎重,对每个索引的必要性都应该经过仔细分析,要有建立的依据。因为太多的索引与不充分、不正确的索引对性能都毫无益处:在表上建立的每个索引都会增加存储开销,索引对于插入、删除、更新 *** 作也会增加处理上的开销。另外,过多的复合索引,在有单字段索引的情况下,一般都是没有存在价值的;相反,还会降低数据增加删除时的性能,特别是对频繁更新的表来说,负面影响更大

以上就是关于在SQLServer中使用索引的技巧全部的内容,包括:在SQLServer中使用索引的技巧、关于SQL数据库查询指令、关于数据库的索引 请帮忙解答等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9849087.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存