2020-10-11:一条sql语句执行时间过长,应该如何优化从哪些方面进行优化

2020-10-11:一条sql语句执行时间过长,应该如何优化从哪些方面进行优化,第1张

改进数据库sql语句进行优化的理由 应用程序之优化通常可分为两个方面:源代码之优化和sql语句之优化。源代码之优化在时间成本和风险上代价很高;另一方面,源代码之优化对数据库系统性能之提升收效有限。 优化之理由 1)sql语句是对数据库(数据)进行 *** 作之惟一途径; 2)sql语句消耗了70%~90%之数据库资源; 3)sql语句独立于程序设计逻辑,相对于对程序源代码之优化,对sql语句之优化在时间成本和风险上之代价都很低; 4)sql语句可以有不同之写法; 5)sql语句易学,难精通。 优化技术之发展 第一代之sql优化工具是执行计划分析工具。这类之工具对输入之sql语句从数据库提取执行计划,并解释执行计划中关键字之含义;第二代之sql优化工具只能提供增加索引之建议,它通过对输入之sql语句之执行计划之分析来产生是否要增加索引之建议。该类工具存在着致命之缺点——只分析了一条sql语句就得出增加某个索引之结论,根本不理会(实际上也无法评估到)增加之索引对整体数据库系统性能之影响。其破坏性在于: 1、不理会增加之索引对其他增、删、改sql语句之负面影响; 2、没有考虑增加之索引可能导致数据库判断失误; 3、对由于增加索引引起之数据库系统负担忽略不计。 同时,这些工具由于技术水平之限制存在着以下缺点: 1、无法保证建议或改写之正确性; 2、无法进行重写,仅仅提供了建议或有限程度之改写,重写工作还是需要人工完成,优化工作所需之时间和工作量同人工进行优化差不多; 3、改写之规则和hints有限,难以处理复杂之sql语句; 4、必须人手逐条进行测试。 这类工具曾经盛极一时,直到人工智能自动sql优化之出现。

1 SQL优化的原则是:将一次 *** 作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。

调整不良SQL通常可以从以下几点切入:

检查不良的SQL,考虑其写法是否还有可优化内容

检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写

检查优化索引的使用

考虑数据库的优化器

2 避免出现SELECT FROM table 语句,要明确查出的字段。

3 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。

4 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。

5 在判断有无符合条件的记录时建议不要用SELECT COUNT ()和select top 1 语句。

6 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。

7 应绝对避免在order by子句中使用表达式。

8 如果需要从关联表读数据,关联的表一般不要超过7个。

9 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。

10 <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。

11 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。

12 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。

13 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。

注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。

14 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customercustomer_id=ordercustomer_id where ordermoney>100。

15 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。

16 如果在语句中有not in(in) *** 作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。

17 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读 *** 作在前面完成,数据库写 *** 作在后面完成,避免交叉。

18 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。

19 用union all 代替 union,数据库执行union *** 作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。

当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。

1、调整数据结构的设计

这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计

这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句

应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(OracleOptimizer)和行锁管理器(row-levelmanager)来调整优化SQL语句。

4、调整服务器内存分配

内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O

这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数

例如:运行在UNIX *** 作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。

一、ORACLE数据库性能优化工具

常用的数据库性能优化工具有:

ORACLE数据库在线数据字典,ORACLE在线数据字典能够反映出ORACLE动态运行情况,对于调整数据库性能是很有帮助的。

*** 作系统工具,例如UNIX *** 作系统的vmstat,iostat等命令可以查看到系统系统级内存和硬盘I/O的使用情况,这些工具对于管理员弄清出系统瓶颈出现在什么地方有时候很有用。

SQL语言跟踪工具(SQLTRACEFACILITY),SQL语言跟踪工具可以记录SQL语句的执行情况,管理员可以使用虚拟表来调整实例,使用SQL语句跟踪文件调整应用程序性能。SQL语言跟踪工具将结果输出成一个 *** 作系统的文件,管理员可以使用TKPROF工具查看这些文件。

ORACLEEnterpriseManager(OEM),这是一个图形的用户管理界面,用户可以使用它方便地进行数据库管理而不必记住复杂的ORACLE数据库管理的命令。

EXPLAINPLAN——SQL语言优化命令,使用这个命令可以帮助程序员写出高效的SQL语言。

二、ORACLE数据库的系统性能评估

信息系统的类型不同,需要关注的数据库参数也是不同的。数据库管理员需要根据自己的信息系统的类型着重考虑不同的数据库参数。

1、在线事务处理信息系统(OLTP),这种类型的信息系统一般需要有大量的Insert、Update *** 作,典型的系统包括民航机票发售系统、银行储蓄系统等。OLTP系统需要保证数据库的并发性、可靠性和最终用户的速度,这类系统使用的ORACLE数据库需要主要考虑下述参数:

数据库回滚段是否足够

是否需要建立ORACLE数据库索引、聚集、散列

系统全局区(SGA)大小是否足够

SQL语句是否高效

2、数据仓库系统(DataWarehousing),这种信息系统的主要任务是从ORACLE的海量数据中进行查询,得到数据之间的某些规律。数据库管理员需要为这种类型的ORACLE数据库着重考虑下述参数:

是否采用B-索引或者bitmap索引

是否采用并行SQL查询以提高查询效率

是否采用PL/SQL函数编写存储过程

有必要的话,需要建立并行数据库提高数据库的查询效率

三、SQL语句的调整原则

SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率是很不相同的。程序员可以使用EXPLAINPLAN语句来比较各种实现方案,并选出最优的实现方案。总得来讲,程序员写SQL语句需要满足考虑如下规则:

1、尽量使用索引。试比较下面两条SQL语句:

语句A:SELECTdname,deptnoFROMdeptWHEREdeptnoNOTIN

(SELECTdeptnoFROMemp);

语句B:SELECTdname,deptnoFROMdeptWHERENOTEXISTS

(SELECTdeptnoFROMempWHEREdeptdeptno=empdeptno);

这两条查询语句实现的结果是相同的,但是执行语句A的时候,ORACLE会对整个emp表进行扫描,没有使用建立在emp表上的deptno索引,执行语句B的时候,由于在子查询中使用了联合查询,ORACLE只是对emp表进行的部分数据扫描,并利用了deptno列的索引,所以语句B的效率要比语句A的效率高一些。

2、选择联合查询的联合次序。考虑下面的例子:

SELECTstuffFROMtabaa,tabbb,tabcc

WHEREaacolbetween:alowand:ahigh

ANDbbcolbetween:blowand:bhigh

ANDcccolbetween:clowand:chigh

ANDakey1=bkey1

AMDakey2=ckey2;

这个SQL例子中,程序员首先需要选择要查询的主表,因为主表要进行整个表数据的扫描,所以主表应该数据量最小,所以例子中表A的acol列的范围应该比表B和表C相应列的范围小。

3、在子查询中慎重使用IN或者NOTIN语句,使用where(NOT)exists的效果要好的多。

4、慎重使用视图的联合查询,尤其是比较复杂的视图之间的联合查询。一般对视图的查询最好都分解为对数据表的直接查询效果要好一些。

5、可以在参数文件中设置SHARED_POOL_RESERVED_SIZE参数,这个参数在SGA共享池中保留一个连续的内存空间,连续的内存空间有益于存放大的SQL程序包。

6、ORACLE公司提供的DBMS_SHARED_POOL程序可以帮助程序员将某些经常使用的存储过程“钉”在SQL区中而不被换出内存,程序员对于经常使用并且占用内存很多的存储过程“钉”到内存中有利于提高最终用户的响应时间。

四、CPU参数的调整

CPU是服务器的一项重要资源,服务器良好的工作状态是在工作高峰时CPU的使用率在90%以上。如果空闲时间CPU使用率就在90%以上,说明服务器缺乏CPU资源,如果工作高峰时CPU使用率仍然很低,说明服务器CPU资源还比较富余。

使用 *** 作相同命令可以看到CPU的使用情况,一般UNIX *** 作系统的服务器,可以使用sar_u命令查看CPU的使用率,NT *** 作系统的服务器,可以使用NT的性能管理器来查看CPU的使用率。

数据库管理员可以通过查看v$sysstat数据字典中“CPUusedbythissession”统计项得知ORACLE数据库使用的CPU时间,查看“OSUserlevelCPUtime”统计项得知 *** 作系统用户态下的CPU时间,查看“OSSystemcallCPUtime”统计项得知 *** 作系统系统态下的CPU时间, *** 作系统总的CPU时间就是用户态和系统态时间之和,如果ORACLE数据库使用的CPU时间占 *** 作系统总的CPU时间90%以上,说明服务器CPU基本上被ORACLE数据库使用着,这是合理,反之,说明服务器CPU被其它程序占用过多,ORACLE数据库无法得到更多的CPU时间。

数据库管理员还可以通过查看v$sesstat数据字典来获得当前连接ORACLE数据库各个会话占用的CPU时间,从而得知什么会话耗用服务器CPU比较多。

出现CPU资源不足的情况是很多的:SQL语句的重解析、低效率的SQL语句、锁冲突都会引起CPU资源不足。

1、数据库管理员可以执行下述语句来查看SQL语句的解析情况:

SELECTFROMV$SYSSTATWHERENAMEIN

('parsetimecpu','parsetimeelapsed','parsecount(hard)');

这里parsetimecpu是系统服务时间,parsetimeelapsed是响应时间,用户等待时间,waitetime=parsetimeelapsed_parsetimecpu

由此可以得到用户SQL语句平均解析等待时间=waitetime/parsecount。这个平均等待时间应该接近于0,如果平均解析等待时间过长,数据库管理员可以通过下述语句

SELECTSQL_TEXT,PARSE_CALLS,EXECUTIONSFROMV$SQLAREA

ORDERBYPARSE_CALLS;

来发现是什么SQL语句解析效率比较低。程序员可以优化这些语句,或者增加ORACLE参数SESSION_CACHED_CURSORS的值。

2、数据库管理员还可以通过下述语句:

SELECTBUFFER_GETS,EXECUTIONS,SQL_TEXTFROMV$SQLAREA;

查看低效率的SQL语句,优化这些语句也有助于提高CPU的利用率。

3、数据库管理员可以通过v$system_event数据字典中的“latchfree”统计项查看ORACLE数据库的冲突情况,如果没有冲突的话,latchfree查询出来没有结果。如果冲突太大的话,数据库管理员可以降低spin_count参数值,来消除高的CPU使用率。

五、内存参数的调整

内存参数的调整主要是指ORACLE数据库的系统全局区(SGA)的调整。SGA主要由三部分构成:共享池、数据缓冲区、日志缓冲区。

1、共享池由两部分构成:共享SQL区和数据字典缓冲区,共享SQL区是存放用户SQL命令的区域,数据字典缓冲区存放数据库运行的动态信息。数据库管理员通过执行下述语句:

select(sum(pins-reloads))/sum(pins)"LibCache"fromv$librarycache;

来查看共享SQL区的使用率。这个使用率应该在90%以上,否则需要增加共享池的大小。数据库管理员还可以执行下述语句:

select(sum(gets-getmisses-usage-fixed))/sum(gets)"RowCache"fromv$rowcache;

查看数据字典缓冲区的使用率,这个使用率也应该在90%以上,否则需要增加共享池的大小。

2、数据缓冲区。数据库管理员可以通过下述语句:

SELECTname,valueFROMv$sysstatWHEREnameIN('dbblockgets','consistentgets','physicalreads');

来查看数据库数据缓冲区的使用情况。查询出来的结果可以计算出来数据缓冲区的使用命中率=1-(physicalreads/(dbblockgets+consistentgets))。

这个命中率应该在90%以上,否则需要增加数据缓冲区的大小。

3、日志缓冲区。数据库管理员可以通过执行下述语句:

selectname,valuefromv$sysstatwherenamein('redoentries','redologspacerequests');

查看日志缓冲区的使用情况。查询出的结果可以计算出日志缓冲区的申请失败率:

申请失败率=requests/entries,申请失败率应该接近于0,否则说明日志缓冲区开设太小,需要增加ORACLE数据库的日志缓冲区。

昌平北大青鸟java培训班转载自网络如有侵权请联系我们感谢您的关注谢谢支持

一、MySQL数据库有几个配置选项可以帮助我们及时捕获低效SQL语句

1,slow_query_log

这个参数设置为ON,可以捕获执行时间超过一定数值的SQL语句。

2,long_query_time

当SQL语句执行时间超过此数值时,就会被记录到日志中,建议设置为1或者更短。

3,slow_query_log_file

记录日志的文件名。

4,log_queries_not_using_indexes

这个参数设置为ON,可以捕获到所有未使用索引的SQL语句,尽管这个SQL语句有可能执行得挺快。

二、检测mysql中sql语句的效率的方法

1、通过查询日志

(1)、Windows下开启MySQL慢查询

MySQL在Windows系统中的配置文件一般是是myini找到[mysqld]下面加上

代码如下

log-slow-queries

=

F:/MySQL/log/mysqlslowquery。log

long_query_time

=

2

(2)、Linux下启用MySQL慢查询

MySQL在Windows系统中的配置文件一般是是mycnf找到[mysqld]下面加上

代码如下

log-slow-queries=/data/mysqldata/slowquery。log

long_query_time=2

通常情况下,即在数据库的数据量,服务器硬件都在承受范围内,进行的是:

1语句调优,包括创建索引,优化语句的实现方式使执行计划更流畅

2表结构变更,即在语句级别的调优没有办法满足性能要求的时候不得不采用的措施包括表的拆分,横向拆分,纵向拆分等

还有其他的一些比较大的改动,包括服务器迁移,读写分离,分布式规划等等

以上就是关于2020-10-11:一条sql语句执行时间过长,应该如何优化从哪些方面进行优化全部的内容,包括:2020-10-11:一条sql语句执行时间过长,应该如何优化从哪些方面进行优化、请简述项目中优化sql语句执行效率的方法,从哪些方面,sql语句性能如何分析、数据库性能优化有哪些措施等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9850544.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存