ArrayExpress是高通量功能基因组数据的一个公共数据库。ArrayExpress由两部分组成 ——ArrayExpress Repository,它是一个MIAME(Minimum Information About a Microarray Experiment)支持的微阵列数据的公共档案库,及ArrayExpress Data Warehouse,它是选自档案库的基因表达谱及一致性重注释的数据库。归档的实验能够通过实验属性,例如关键词,物种,阵列平台,作者,期刊或访问号进行查询。基因表达谱能够通过基因名字和属性,例如基因本体论术语进行查询,并且基因表达谱能够被可视化。ArrayExpress是一个快速增长的数据库,目前它包含的数据来自超过5万次的杂交和超过1500000次的独特表达谱。
ArrayExpress与Geo数据库类似,里面都存储了大量的芯片表达数据,对于数据库挖掘的学员们来说,ArrayExpress是一个不可或缺的数据库。比如如果你在在GEO数据库中搜索不到想要的结果时,可以在ArrayExpress数据库中搜索,它与GEO数据库互补,帮助大家完成数据的搜索和下载,方便后续的分析。
1、数据处理工具:Excel
数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。
2、数据库:MySQL
Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本 *** 作;数据表的基本 *** 作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。
3、数据可视化:Tableau & Echarts
如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。
一份关于数据科学家应该具备的技能清单
大数据时代,什么职业比较吃香答案可以从今年的校招薪资列表上知道——算法工程师、人工智能研究员、数据分析等职位。其实这几个职位有一定的交集,那就是需要处理大量的数据,尤其是作为一名数据科学家,主要的工作在处理数据和分析数据上面,也有部分工作与算法工程师和人工智能研究员相重叠,其所占的优势在于对数据更加敏感。那么作为一名数据科学家,应该具备的技能有哪些呢本文将一窥究竟。
1学历
数据科学家一般都具有高学历——88%的数据科学家至少是硕士学位,46%的数据科学家是博士学位,这表明想要成为一名数据科学家需要非常好的教育背景(知识了解深入)。常见的专业是计算机科学、社会科学、物理科学和统计学。最常见的研究领域是数学和统计(32%),其次是计算机科学(19%)和工程应用(16%)。在攻读上述学位中学习到的专业知识都将为您提供处理和分析大数据所需的技能。
在取得学位后就可以高枕无忧了吗答案是否定的,现在是终生学习的时代。事实上,大多数数据科学家在拥有硕士学位或博士学位后,还不断通过在线训练以学习如何使用Hadoop或大数据查询等特殊技能。
2R编程语言
对于数据科学家而言,R语言通常是首选编程语言。R语言是专门为数据科学需求而设计的,可以使用R语言来解决在数据科学中遇到的任何问题。事实上,43%的数据科学家正在使用R语言来解决统计问题。
但是学习R语言时有一个障碍,那就是如果你已经掌握了一门其它编程语言,那学起来是很痛苦的。尽管如此,互联网上有很多R语言学习资源,例如Simplilearn的数据科学训练和R编程语言。
技术类技能:计算机科学
3Python编程
Python语言近来很火,随着人工智能以及深度学习的发展,Python已经超越Java语言成为编程中最常用的语言。Python也是在数据科学中常见的编码语言,据调查,40%的受访者使用Python作为其主要编程语言。
由于Python的多功能性,可以将其用于所有涉及数据科学过程的步骤。比如,Python可以采用各种格式的数据,并且可以轻松地将SQL表导入到代码中。此外,还允许创建数据集。
4Hadoop平台
CrowdFlower对3490 名领英上注册的数据科学家进行了一次调查,发现49%的数据科学家将Apache Hadoop列为第二项重要技能。
作为一名数据科学家,可能会遇到拥有的数据量超出了系统的内存,或者需要将数据发送到不同的服务器的问题,这些问题都可以通过Hadoop解决——使用Hadoop对数据进行分布式处理。此外,还可以使用Hadoop进行数据挖掘、数据过滤、数据采样和汇总。
5SQL数据库/编程
尽管NoSQL和Hadoop已经成为数据科学的一个重要组成部分,但有些人仍然可以在SQL中编写和执行复杂的查询。SQL(结构化查询语言)是一种编程语言,可以执行诸如添加、删除和从数据库提取数据等 *** 作,还可以执行分析功能并转换数据库结构。
作为一名数据科学家,需要精通SQL。这是因为SQL专门设计用于访问、通信和处理数据。当使用它来查询数据库时,它会提供见解。此外,由于其简洁的命令,可以节省时间并减少执行困难查询时所需的编程量。
6Apache Spark
Apache Spark正成为全球最受欢迎的大数据技术。它类似于Hadoop,是一个大数据计算框架。唯一的区别是Spark比Hadoop更快。这是因为Hadoop需要读取和写入磁盘,而Spark将其计算缓存在内存中,这类似于机械硬盘与SSD的区别。
Apache Spark专为数据科学而设计,能更快地运行复杂的算法。当处理大量数据时,它有助于传播数据处理,从而节省时间。此外,还能处理复杂的非结构化数据集。
Apache Spark的优势在于其速度,利用该平台使得开展数据科学项目变得非常容易。借助Apache Spark,可以执行从数据采集到分布式计算的分析。
7机器学习和人工智能
许多数据科学家并没有精通机器学习领域相关知识和技术,比如神经网络、强化学习、对抗学习等。如果想从数据科学家中脱颖而出的话,需要了解机器学习技术,如监督学习、决策树、逻辑回归等,这些技术将帮助你解决基于已有的数据和结果来预测不同数据科学问题。
数据科学需要在机器学习的不同领域应用技能,Kaggle在其调查中发现,一小部分数据专业人员掌握了高级机器学习技能,如监督学习、无监督学习、时间序列、自然语言处理、异常检测、计算机视觉、推荐引擎、生存分析、强化学习和对抗学习等。
8数据可视化
大数据时代,数据很多很乱,有些原始数据需要翻译成易于理解的格式。人们自然而然地以图表的形式展示数据所要表达的意思,“一张胜过千言万语”。
作为一名数据科学家,必须能够借助数据可视化工具(如ggplot、d3js和Matplottlib以及Tableau)来可视化数据,这些工具能将项目的复杂结果转换为易于理解的格式。
数据可视化为组织提供了直接处理数据的机会,可以迅速掌握见解,帮助他们抓住新的商业机会并保持领先地位。
9非结构化数据
数据科学家能够处理非结构化数据至关重要,非结构化数据是不适合定义为数据库的形式,比如视频、博客文章、客户评论、社交媒体文章、视频文件、音频等,对这些类型的数据进行排序很困难。
由于非结构化数据的复杂性,大多数人将非结构化数据称为“黑暗分析(dark analytics)”。使用非结构化数据有助于揭示对决策制定有用的见解。作为数据科学家,必须有能力理解和 *** 纵非结构化数据。
非技术类技能
10好奇心
我没有特殊的才能,我只是充满了好奇心——爱因斯坦。
好奇心可以被定义为渴望获得更多的知识,作为一名数据科学家,需要能够提出有关数据的问题,因为数据科学家将大约80%的时间用于发现和准备数据。由于数据科学领域是一个发展非常迅速的领域,必须学习更多知识以保持不落伍。
通过在线阅读内容并阅读关于数据科学趋势的相关书籍来定期更新知识,不要被互联网上的大量数据所淹没,必须能够知道如何理解这一切。好奇心是作为数据科学家取得成功所需的技能之一。例如,第一次看到收集到的数据时,不知道这些数据有什么意义。但好奇心将帮助你筛选数据以找到答案和更多见解。这就像两个人相亲一样,只有当你对另一方感到好奇时,才会深入的了解下去。
11商业头脑
要成为一名数据科学家,需要对所从事的行业有深入的了解,并了解公司正在努力解决的业务问题。在数据科学方面,除了找出业务应该利用其数据的新方式之外,能够辨别哪些问题对于解决业务问题至关重要。
为了做到这一点,必须了解要解决的问题会如何影响业务,这就是为什么需要了解企业的运作方式,以便能够朝正确的方向努力。
12沟通能力
一些公司正在寻找具有很好沟通能力的数据科学家,他们能够清晰流利地将技术发现传递给非技术团队的人员,比如市场营销部门或销售部门。数据科学家除了理解非技术同事的需求以便适当地调整数据外,还必须做出相关的决定。
除了说同一种语言外,还需要使用数据以讲故事的方式交流。作为一名数据科学家,必须知道如何创建一个围绕数据的故事情节,以方便任何人都能理解。例如,呈现数据表格不如以故事形式分享这些数据的见解。讲故事可以帮助你将你的发现与雇主正确沟通。
沟通时,请注意分析数据的结果,大多数企业主并不想知道你分析的具体内容,而是对如何积极影响其业务感兴趣。学会专注于提供价值并通过沟通建立持久的关系。
13团队合作
数据科学家不可能单打独斗,而是不得不与公司高管合作制定策略、与产品经理和设计师合作创造更好的产品、与营销人员一起推出更好的转换活动、与客户端和服务器软件开发人员共同创建数据管道并改善工作流程。数据科学家必须与组织中的每个人一起工作,包括客户。
从本质上讲,数据科学家将与团队成员合作开发用例,以了解解决问题所需的业务目标和数据。需要知道解决用例的正确方法、解决问题所需的数据以及如何将结果呈现为所涉及的每个人都可以轻松理解的内容。
数据挖掘与预测分析术语总结
数据挖掘目前在各类企业和机构中蓬勃发展。因此我们制作了一份此领域常见术语总结,希望你喜欢。
分析型客户关系管理(Analytical CRM/aCRM): 用于支持决策,改善公司跟顾客的互动或提高互动的价值。针对有关顾客的知识,和如何与顾客有效接触的知识,进行收集、分析、应用。参见>>>
大数据(Big Data): 大数据既是一个被滥用的流行语,也是一个当今社会的真实趋势。此术语指代总量与日俱增的数据,这些数据每天都在被捕获、处理、汇集、储存、分析。维基百科是这样描述“大数据”的:“数据集的总和如此庞大复杂,以至于现有的数据库管理工具难以处理(…)”。
商业智能(Business Intelligence): 分析数据、展示信息以帮助企业的执行者、管理层、其他人员进行更有根据的商业决策的应用、设施、工具、过程。
流失分析(Churn Analysis/Attrition Analysis): 描述哪些顾客可能停止使用公司的产品/业务,以及识别哪些顾客的流失会带来最大损失。流失分析的结果用于为可能要流失的顾客准备新的优惠。
联合分析/权衡分析(Conjoint Analysis/ Trade-off Analysis): 在消费者实际使用的基础上,比较同一产品/服务的几个不同变种。它能预测产品/服务上市后的接受度,用于产品线管理、定价等活动。
信用评分(Credit Scoring): 评估一个实体(公司或个人)的信用值。银行(借款人)以此判断借款者是否会还款。
配套销售/增值销售(Cross / Up selling): 一个营销概念。根据特定消费者的特征和过往行为,向其销售补充商品(配套销售)或附加商品(增值销售)。
顾客细分&画像(Customer Segmentation & Profiling): 根据现有的顾客数据,将特征、行为相似的顾客归类分组。描述和比较各组。
数据集市(Data Mart): 特定机构所储存的,关于一个特定主题或部门的数据,如销售、财务、营销数据。
数据仓库(Data Warehouse): 数据的中央存储库,采集、储存来自一个企业多个商业系统的数据。
数据质量(Data Quality): 有关确保数据可靠性和实用价值的过程和技术。高质量的数据应该忠实体现其背后的事务进程,并能满足在运营、决策、规划中的预期用途。
抽取-转换-加载 ETL (Extract-Transform-Load): 数据仓储中的一个过程。从一个来源获取数据,根据需求转换数据以便接下来使用,之后把数据放置在正确的目标数据库。
欺诈检测(Fraud Detection): 识别针对特定组织或公司的疑似欺诈式转账、订购、以及其他非法活动。在IT系统预先设计触发式警报,尝试或进行此类活动会出现警告。
Hadoop: 另一个当今大数据领域的热门。Apache Hadoop是一个在已有商业硬件组成的计算机集群上,分布式存储、处理庞大数据集的开源软件架构。它使得大规模数据储存和更快速数据处理成为可能。
物联网(Internet of Things, IoT): 广泛分布的网络,由诸多种类(个人、家庭、工业)诸多用途(医疗、休闲、媒体、购物、制造、环境调节)的电子设备组成。这些设备通过互联网交换数据,彼此协调活动。
顾客的生命周期价值 (Lifetime Value, LTV): 顾客在他/她的一生中为一个公司产生的预期折算利润。
机器学习(Machine Learning): 一个学科,研究从数据中自动学习,以便计算机能根据它们收到的反馈调整自身运行。与人工智能、数据挖掘、统计方法关系密切。
购物篮分析(Market Basket Analysis): 识别在交易中经常同时出现的商品组合或服务组合,例如经常被一起购买的产品。此类分析的结果被用于推荐附加商品,为陈列商品的决策提供依据等。
联机分析处理(On-Line Analytical Processing, OLAP): 能让用户轻松制作、浏览报告的工具,这些报告总结相关数据,并从多角度分析。
预测分析(Predictive Analytics): 从现存的数据集中提取信息以便识别模式、预测未来收益和趋势。在商业领域,预测模型及分析被用于分析当前数据和历史事实,以更好了解消费者、产品、合作伙伴,并为公司识别机遇和风险。
实时决策(Real Time Decisioning, RTD): 帮助企业做出实时(近乎无延迟)的最优销售/营销决策。比如,实时决策系统(打分系统)可以通过多种商业规则或模型,在顾客与公司互动的瞬间,对顾客进行评分和排名。
留存/顾客留存(Retention / Customer Retention): 指建立后能够长期维持的客户关系的百分比。
社交网络分析(Social Network Analysis, SNA): 描绘并测量人与人、组与组、机构与机构、电脑与电脑、URL与URL、以及其他种类相连的信息/知识实体之间的关系与流动。这些人或组是网络中的节点,而它们之间的连线表示关系或流动。SNA为分析人际关系提供了一种方法,既是数学的又是视觉的。
生存分析(Survival Analysis): 估测一名顾客继续使用某业务的时间,或在后续时段流失的可能性。此类信息能让企业判断所要预测时段的顾客留存,并引入合适的忠诚度政策。
文本挖掘(Text Mining): 对包含自然语言的数据的分析。对源数据中词语和短语进行统计计算,以便用数学术语表达文本结构,之后用传统数据挖掘技术分析文本结构。
非结构化数据(Unstructured Data):数据要么缺乏事先定义的数据模型,要么没按事先定义的规范进行组织。这个术语通常指那些不能放在传统的列式数据库中的信息,比如电子邮件信息、评论。
网络挖掘/网络数据挖掘(Web Mining / Web Data Mining) : 使用数据挖掘技术从互联网站点、文档或服务中自动发现和提取信息。
以上是小编为大家分享的关于数据挖掘与预测分析术语总结的相关内容,更多信息可以关注环球青藤分享更多干货
录入完数据后,你可以先进行基础的数据统计--描述性统计。然后根据你的数据结果再看是否需要相关回归或者其他分析。spss里面的描述统计主要在analyze——descriptive里面,其中有描述统计、频数统计、交叉分析。 描述性统计分析是统计分析的第一步,先选择analyze,你就能看到descriptive,然后鼠标再选Descriptive 菜单中,最常用的是列在最前面的四个过程:Frequencies过程的特色是产生频数表;Descriptives过程则进行一般性的统计描述;Explore过程用于对数据概况不清时的探索性分析;Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验。 先选择analyze,---再选descriptive 打开任意的分析窗口后,你把想分析的数据选入,可以一起按鼠标左键选中按中间按钮加入,然后选择单击后d出Statistics对话框,用于定义需要计算的其他描述统计量。你可以分析均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)等等。 然后还可以点Charts对话框,选择直方图、饼图等来绘图。都确定好后,选择单击Continue钮 ,然后选择OK。就可以了。直接就会有输出结果。 你可以先看看描述性统计的结果,有没有什么缺失值或者不符合实际的数据出现。要是有,你需要纠正数据,再用描述统计进行分析。 我觉得说的挺详细的了。呵呵~~~~
以上就是关于arrayexpress生存信息在哪里全部的内容,包括:arrayexpress生存信息在哪里、数据分析常用哪些工具、一份关于数据科学家应该具备的技能清单等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)