2、要系统了解金融知识结构;
3、要将表格中的各个表头的各个项目之间的关系搞清楚,这样才有利于之后的分析;
4、表格的数据变化趋势可以研究一下。
任何数据分析的前提是首先要理解业务模型,从你的金融数据是怎么产生的,包括哪些指标哪些数据,你的分析是要为什么业务服务的,也就是你的目的。比如你分析金融数据的目的是要找出最有价值的金融产品,还是最有价值的客户,还是寻找最有效的成本节约途径等在弄清楚你的分析目的,和理解清楚你的业务模式等之后,再考虑你需要采用哪些数据,采用什么方法来进行分析,这才涉及到如何进行具体的分析过程。
从整个大数据分析来看,前期的业务理解和数据整理大概要耗费一大半的精力和时间,弄清楚前期,后期的分析则会很快。
目前国内外常用的金融数据库的主要优点是:商品化的数据库管理系统以关系型数据库为主导产品,技术比较成熟。
金融数据除了具有数据的一般特性外,还具有自身的一些特性:
(1)广泛性。由于金融机构在国民经济中处于特殊地位,它与全社会各个经济细胞和微观主体都有着密切的联系,因此必须面向全社会广泛获取数据,这就使得金融数据的涵盖范围非常广泛。
(2)综合性。金融数据作为国民经济的综合部门,直接面向国民经济各行各业,为全社会的各群体提供金融服务。通过这些服务尤其是资金服务,可以汇集起反映国民经济运行的综合数据,因此金融数据具有很强的综合性。
金融数据库分类:
按照金融业务活动划分,可以将金融数据分为银行业务数据、证券业务数据、保险业务数据以及信托、咨询等方面的数据,其中银行业务数据又包括信贷、会计、储蓄、结算、利率等方面的数据。
证券业务数据又包括行情、委托、成交、资金市场供求以及上市公司经营状态等方面的数据;保险业务数据又包括投保、理赔、投资等方面的数据。这些数据都从某一侧面反映了金融活动的特征、规律和运行状况。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)